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Abstract. Along with the amplitude and dispersion directivity, conditioned by the material 
anisotropy, source-induced elastic guided waves in layered fiber-reinforced polymer 
composite structures exhibit non-neglectable attenuation due to the polymer matrix viscosity. 
The latter should be adequately accounted for in ultrasonic nondestructive testing and 
structural health monitoring systems for their reliable operation. In the current paper, the 
influence of attenuation on guided wave propagation in anisotropic laminates is investigated 
experimentally and numerically. In the computational model, viscosity driven wave amplitude 
decay is addressed through the complex stiffness matrix, and semi-analytical integral 
approach is employed for parametric analysis. Experimental measurements are performed for 
piezoelectrically excited guided waves with scanning laser Doppler vibrometry technique.  
Keywords: elastic guided waves; laminate composites; attenuation; linear viscoelasticity.  
 
 
1. Introduction 
Thin-walled structures, manufactured from fiber reinforced polymer (FRP) composites 
materials are increasingly used in strength-critical engineering constructions and, therefore, 
are among the main application areas of ultrasonic Nondestructive Evaluation (NDE) and 
Structural Health Monitoring (SHM) approaches [1]. Employing elastic guided waves (GWs) 
as the structure interrogation physical phenomenon, these techniques benefit from the ability 
of GWs to propagate at long ranges in plate-like geometries and to interact with various 
structural features.  

Compared to metals, stronger attenuation of propagating waves in FRP laminate 
composites is observed [2]. In addition to the geometrical decay, GWs undergo damping, 
caused by the viscos nature of the polymer matrix. It depends not only on frequency and GW 
mode type but on the direction of wave propagation as well. Since extensive theoretical 
investigations of GW phenomenon in layered composite structures is an essential step for the 
development of efficient and reliable ultrasonic NDE and SHM systems, material-based 
attenuation should be considered in the corresponding computational models. Due to the 
relatively small strain rates typical for GWs, the latter is commonly achieved by assuming the 
material being a linear viscoelastic one [3]. In the case of time-harmonic motion, it results in 
the complex-valued stiffness tensor in the stress-strain relation, which replaces its pure real 
counterpart for the lossless elastic structure [3, 4]. On the other hand, in mesh-based 
simulations of transient GWs the Rayleigh damping approach is widely adopted [5]. 

In general, the components of the complex stiffness tensor are frequency dependent. 
However, experimental data for measured dispersion characteristics and wave fronts of 
ultrasonic bulk waves suggest that some simplifications are acceptable [6, 7]. Namely, real 
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part of elastic moduli is assumed constant and hysteretic or Kelvin-Voigt models are 
commonly employed to handle the dynamic behavior of the complex stiffness tensor. While 
in the former, imaginary part of each viscoelastic constant does not depend on frequency, 
linear growth is assumed in the latter [3]. Although being initially adopted for bulk elastic 
waves, these models are widely utilized for the evaluation of GW dispersion properties when 
viscosity is considered [8, 9]. Available experimental results [2, 10] (very limited, up to date) 
for attenuation frequency dependencies of fundamental GW in laminate FRP composites 
show almost linear behavior. Thus, even the simplest hysteretic approach seems to be an 
adequate approximation for the viscosity damping, at least, in the limited frequency range of 
fundamental GW modes, which, nevertheless, is important for NDE and SHM applications. 

The characterization of complex stiffness tensor, serving as an input for the 
aforementioned models, is a challenging optimization problem. It might be addressed through, 
e.g., low-frequency dynamic vibration tests [11] or, otherwise, with high-frequency ultrasonic 
interferometry methods, based on transmission of bulk elastic waves [6, 7]. Alternatively, 
some simplifying assumptions reducing the amount of independent imaginary parts of 
viscoelastic moduli or even relating them directly to the initial pure elastic stiffness tensor, 
have been also proposed [12, 13]. The latter might be useful as a starting point for the 
development of material characterization techniques, based on measured GW dispersion 
characteristics and attenuation curves. 

In the present work, viscosity attenuation of elastic guided waves in a unidirectional 
carbon FRP composite material is investigated within the analytically-based computational 
model relying on the semi-analytical integral approach for 3D elastodynamics of laminate 
anisotropic structures [14]. Being a frequency-domain technique, it allows studying frequency 
and direction dependencies of GW dispersion and attenuation properties [14, 15], and, at the 
same time, evaluate transient propagation of GWs, excited by any surface or internal localized 
load through the efficient integral equation, based on asymptotic solutions for forced 
GWs [14]. Viscosity behavior of the material is handled with the hysteretic approach and its 
modification intending to follow the experimentally obtained attenuations of fundamental 
GWs. The latter are quantified for piezoelectrically induced GWs with a non-contact laser 
Doppler vibrometry.  
 
2. Computation model for a viscoelastic anisotropic waveguide 
Time-harmonic oscillations ),,(,),( zyx

ti uuue =− uxu ωω , ),,( zyx=x , ( fπω 2= , f  [Hz] is a 
dimensional frequency) of a plate-like traction-free anisotropic laminate 

}0,|||,:|),,{( <<−∞<= zHyxzyxD  are considered (Fig. 1). Assuming the waveguide 
material being a linear viscoelastic one, its dynamic behavior can be modeled by allowing 
complex components in the corresponding stiffness matrix: )()()(~ ωηωω iCC −= , where C  
and η  are real-valued, in general, frequency-dependent 66×  matrixes further referred as an 
elastic stiffness and viscosity matrices.  
 

 
 

Fig. 1. Geometry of the problem: general scheme (left) and top view (right). 
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The structure is excited by a load ),,(,),( zyx
ti qqqe =− qxq ωω , localized at its top 

surface z = 0 (the time-harmonic factor tie ω−  is further omitted). The geometry of the 
considered boundary-value problem allows one to apply integral Fourier transform Fxy over 
the horizontal spatial variables x, y and to derive its explicit solution in terms of inverse 
Fourier two-fold path integral [14]: 
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where K = Fxy[k] and Q = Fxy[q] are Fourier symbols of the Green's matrix k(x) and the 
contact stress vector q(x,y) (the notations of Ref. 14 and 15 are employed); coordinates (r, φ) 
and (α, γ) are introduced in spatial and Fourier domains, respectively. Since the poles of the 
matrix K elements are now complex values with positive imaginary part, the integration 
path Γ+ goes in the complex plane directly along the real semi-axis Re α ≥ 0, Im α = 0. With 
the residue technique and the stationary phase method, Equation (1) is reduced to the 
asymptotic expansion in terms of quasi-cylindrical guided waves un [14, 15]: 

./),()(

),)(()()(

1

1

1

∑

∑

=

−

=

=

∞→+=

n
nm

r

M

m
n

ris
nmn

nn

N

n
n

rez

rrO

zϕ

zz

axu

xuxu
 (2) 

Here )( nmnnm ss γ=  are complex wavenumbers of the GWs un; nmγ  are the stationary 
points of the phase functions γπϕγζγ sin)]2/(Re[)(ˆ ++= nns : 0)(ˆ =′ nmns γ ; Nr is the 
number of poles nζ  closest to the real axis; Mn is the number of stationary points nmγ of the  
n-th phase function nŝ ; amplitude factors anm are expressed via the residues of the product 
KQ  from the poles )( nmn γζ . Each term in the second sum of Equations (2) is a cylindrical 
guided wave (CGW), specified in the radial observation direction φ by the complex 
wavenumber )(ϕnms  and wavelength ]Re[/2 nmnm sπλ = . The imaginary part 

)](Im[ ϕχ nmnm s=  of the wave number )(ϕnms  is responsible for the attenuation intensity, 
contributing to the Equations (2) as a decaying exponential term )exp( rnmχ− . Since the lossy 
media is considered, energy velocities nmec ,  should be used to characterize the speed of 
propagating wave packets. They are expressed in the following form [4]: 

,)(,
H

H
nmec

Π+Κ

⋅
=

ϕ
ϕ

ne
 (3) 

where the brackets H>< .. denote the average over the waveguide thickness, symbol “ ⋅ ” is for 
scalar product of complex-valued vectors, e(z) is the time-averaged Umov-Poynting vector, 

ϕn  stands for the unit vector along the observation direction φ; Κ  and Π  are time-averaged 
kinetic and potential energy: 

),Re(
4
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and the six-component strain and stress vectors ε  and σ  are obtained from the corresponding 
tensors by means of the Voigt notation. Since Equation (3) is derived within the plane wave 
assumption, the displacement vector is rewritten as follows: 

))],sin()cos((exp[),()( nmnmnmnmnm yxiz γγςϕ +−= axu  
and the terms nmnmnm z γςϕ ,),,(a  are taken from Equations (2). 

The described computational model has been verified over the results from Ref. 8 and 9, 
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and it could be adopted for the simulation of time-harmonic and transient response to the 
forced loading of layered anisotropic waveguide as well as for the evaluation of its dispersion 
properties. As an example, energy velocity nmec ,  and attenuation nmχ  dispersion curves of 
fundamental symmetric (S0), antisymmetric (A0) and shear-horizontal (SH0) modes for a 
unidirectional composite of thickness H = 1.12 mm and density ρ = 1482 kg/m3 for three 
propagation directions (namely, 4/,0 πϕϕ ==  and 2/πϕ = ) are provided in Fig. 2. This 
laminate represents an experimental carbon FRP sample with unidirectional [0o]4 lay-up of 
prepregs; fiber alignment direction coincides with the x-axis of the introduced Cartesian 
coordinate system (Fig. 1).  
 

 
Fig. 2. Frequency dependencies of energy velocities and attenuation of fundamental modes 
(S0 – blue lines, SH0 – black lines and A0 – red lines) for propagation directions along the 

principal material axis (a, c) and for 4/πϕ =  (b); markers indicate corresponding group 
velocities for the pure elastic case. 

 
Within this simulation, it is assumed that the matrices C  and η  do not depend on 

frequency (hysteretic model) and the components of the former in the principal directions of 
material symmetry are the following (in GPa) [16]: 2.11711 =C , 2.1022 =C , 7.412 =C , 

55.244 =C , 45.355 =C . Since the elements of the viscosity matrix η  are initially unknown, 
they are chosen being proportional to the corresponding values of the elastic stiffness matrix 
C  with the coefficient, 05.0=θ , i.e., Cθη = [17]. Even these preliminary computations 
illustrate the strong influence of material anisotropy not only on energy velocities but on 
attenuation factors nmχ  as well. It is especially pronounced for 0Sχ , which intensity in fiber 
direction is expectedly sufficiently smaller than in the perpendicular one (Fig. 2, a,c). On the 
other hand, within the current assumption about η -matrix components (further referred as 
Model 1), 0Aχ  varies only slightly with the propagation angle ϕ . The expected separation of 
single SH0 mode into three propagating quasi-cylindrical waves [15] is observed as well 
(Fig. 2, b, three black curves). Comparing to the pure elastic case (group velocities plotted 
with markers in Fig. 2), only minor difference is observed with the maximum relative 
deviation of 2%, achieved for S0 mode, propagating along the direction 2/πϕ =  at the right 
boundary of the frequency region considered. 

 
3. Guided waves in a unidirectional fiber-reinforced polymer composite 
Numerous experimental measurements of the transient GWs, excited with surface mounted 
PWAS, performed for the aforementioned unidirectional specimen [18], indicate that the 
attenuation of the A0 mode in the direction perpendicular to fiber alignment ( 2/πϕ = ) is 
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immensely stronger than for 0=ϕ . The results from Fig. 2 do not coincide with the latter, 
and, therefore, the values of the viscosity matrix η  elements should be tuned to represent 
such a behavior. 

Preliminarily, the frequency dependences of the attenuation factor )( fχ  are measured 
along the material principal axis. It is related to the imaginary part of the complex 
wavenumber nms  and might be obtained from the relation [2]: 

2112
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χ , 

where ),( 2,1 fvz x  is the spectrum of the out-of-plane velocities )(tvz , measured at surface 
points 1x  and 2x  with the scanning laser Doppler vibrometer, d is the distance between them 
and p is the correction factor, which takes into account the r  geometrical decay of quasi-
cylindrical GWs according to the Equation (3). Excitation of GWs has been performed with a 
small circular piezoelectric wafer active sensor (PWAS) of radius 3=R  mm and thickness 

25.0=h  mm. The actuator is adhesively attached to the specimen and is driven with transient 
voltage in the form of broadband rectangular pulse. The location of measurement points 1x  
and 2x  is chosen in such a way that the wave packets, related to S0 and A0 modes, are well 
separated and, therefore, attenuation factors )(0 fSχ  and )(0 fAχ  might be estimated. The 
obtained results after averaging for, at least, four mutual locations of points  1x  and 2x  are 
summarized in Figs. 3 and 4 (green lines) for propagation directions 0=ϕ  and 2/πϕ = , 
respectively. It should be noted that there is a very high dispersion of attenuation data for 
S0 wave in the direction 0=ϕ , which is conditioned by its low out-of-plane velocity 
amplitudes even at high frequencies and by systematic measurements errors, occurring during 
the observation of an oblique-angled motion with one-dimensional scanning laser 
vibrometry [19]. Therefore, the confidence of the corresponding results (Fig. 3, b) is not 
sufficient. 
 

 
Fig. 3. Experimental (green) and computed (other colors) attenuation of fundamental A0 and 

S0 modes (subplots a) and b)) for propagation direction along to the fiber alignment. 
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Fig. 4. Experimental (green) and computed (other colors) attenuation of fundamental A0 and 
S0 modes (subplots a) and b)) for propagation direction perpendicular to the fiber alignment. 

 
The corresponding attenuation curves, obtained with the Model 1 assumption about the 

viscosity matrix are shown in the same figures with black lines. Though the damping of 
S0 mode is predicted quite adequately, the results for A0 wave do not coincide with 
experimental data. Since the simple variation of parameter θ  does not solve this issue, a more 
advanced model relating C~ ,η  and C matrixes has been implemented, based on the approach, 
proposed in Ref. [13]. In the case of a transversely isotropic elastic layer with its symmetry 
axis (fiber alignment direction), coinciding with the x-axis, the following relations are 
suggested (Model 2): 
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Here parameter p is the damping factor, and β is the additional coefficient employed for 
the attenuation enhancement in the direction orthogonal to the symmetry axis x. Moreover, 
since the elements 22

~C  and 44
~C  of the complex stiffness matrix have been additionally 

modified, the element 23
~C  is assumed being independent from them to avoid its possible 

unphysical values. Considering sensitivity studies of the elastic moduli influence on GW 
dispersion properties [16], trial and error fitting of the computed attenuation curves to the 
experimental ones provides some preliminary estimations for p and β constants: 04.0=p  and 

75.1=β . The corresponding 0Aχ  and 0Sχ  curves are given in Figs. 3 and 4 with red lines. 
Although the intensity of 0Aχ  factor for both propagation directions is represented more 
adequately, the slope of theoretical and experimental A0-attenuation curves does not coincide 
for 2/πϕ = . 

Along with the stiffness matrix )(~ ωC , complex compliance matrix may be formally 
derived: )(~)(~ 1 ωω −= CS , and the corresponding set of engineering constants (Young’s 
moduli yx EE ~,~ , shear moduli xyyz GG ~,~  and Poisson’s ratio xyν~  are all complex-valued) could 
be considered as the basic viscoelastic material parameters [17]. Recalling the results for pure 
elastic case [16], the attenuation of A0 and S0 modes in the direction 2/πϕ =  is controlled 
only by parameters yE~  and yzG~ . Moreover, in the frequency range considered, the influence 

of yE~  on 0Sχ  is predominant. Therefore, it is suggested that the required behavior of 0Aχ  

could be achieved primarily by modifying the imaginary part of yzG~  shear modulus and that 
such a modification would not produce a significant effect on 0Sχ . According to the 
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curvature of the experimental 0Aχ  curve, the parameter yzG~  is sought in the following form:  

ω/~ )2()1(
xyxyyz iGGG += , (5) 

where )2()1( , xyxy GG  are real values (Model 3). Taking the imaginary part of complex engineering 
constants equal to 5% of the corresponding values for the pure elastic case as an initial guess, 
the following complex moduli are obtained after the attenuation curve tuning (in GPa, except 
the Poisson’s ratio): 5.52.110~ iEx −= , 5.015.8~ iEy −= , ω/6.055.2~ iGyz −= , 

1.045.3~ iGxy −= , 01.032.0~ ixy −=ν . Simulated attenuation dispersion curves are depicted in 
Figs. 3 and 4 with blue lines, and the behavior of experimental A0 mode attenuation is 
reliably reproduced. 

To illustrate the importance of accounting for the material viscosity in the simulations, 
experimental transient wavefields )(tvz  are compared with theoretical data, computed for the 
described lossy models and for the ideally elastic structure. Guided waves are excited by the 
same small circular PWAS, which is driven with sine-windowed two-cycle sinus tone bursts 
with central frequencies 120=cf  and 240 kHz. Due to the relatively small thickness of the 
actuator, the arising contact stresses ),( ωxq  are approximated with the pin-force model [19], 
i.e., by ring delta-like distribution of surface radial tension [14]: 

}0,sin,cos{),( ϕτϕτω rzrzq =x , )( arrrz −= δτ . Wave patterns at the points )0,mm120(1P , 
mm)120,0(2P  and mm)80,0(3P  are shown in Figs. 5 – 7 in the normalized form. For the 

propagation direction along the fiber alignment (point 1P ) the viscosity has only slight 
influence on the GW amplitudes, and the lossless model provides adequate results (Fig. 5, a). 
At the same time, the damping of A0 mode, predicted with Models 1 and 2, is overestimated 
in this frequency range ( 240=cf kHz). On the other hand, the attenuation of A0 mode in the 
perpendicular direction is substantial and could not be neglected, i.e., even at rather low 
frequencies (Fig. 6, 120=cf kHz) the amplitude of S0 wave starts to dominate in the 
measured )(tvz  not far away from the source. The dissipation of A0 becomes severer with the 
frequency growth, and even at 80 mm distant point 3P , antisymmetric wave is almost damped 
out at 240=cf  kHz (Fig. 7). The provided computational results suggest that Models 2 and 
3 are addressing A0 attenuation in an adequate way, though, as expected, with Model 2 lower 
frequency components of A0 are underdamped (Fig. 6, c).  

 

 
Fig. 5. Normalized measured (red line) and computed (blue line) time histories of out-of-plain 
velocities at surface point P1 (ideal elastic case (a) and Models 1 – 3 (b – d)); 240=cf  kHz. 
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Fig. 6. Normalized measured (red line) and computed (blue line) time histories ),( tvz x  at 

surface point P2 (ideal elastic case (a) and Models 1 – 3 (b – d)); 120=cf  kHz. 
 

As an additional example, predicted and measured GW patterns for off-symmetry axis 
location, namely, at point mm)60,mm60(4P are shown in Fig. 8 for 240=cf kHz excitation. 
While the computations for an ideal elastic material coincide with the experimental data only 
in the sense of wave-packet time-of-arrival and their general form, consideration of the 
viscosity within Models 2 or 3 allows one to predict relative amplitudes as well. It is 
interesting to note that for this propagation direction 4/πϕ =c  one of the branches of shear-
horizontal wave SH0 (Fig. 2, b) is also observed both in the experiments and in the 
simulation. Within the three clearly distinguishable wave-packets, the latter is the middle one, 
arriving at the observation point after time 05.0=t ms. 
 

 
Fig. 7. Normalized measured (red line) and computed (blue line) time histories ),( tvz x  at 

surface point P3 (ideal elastic case (a) and Models 1 – 3 (b – d)); 240=cf  kHz. 
 

 
Fig. 8. Normalized measured (red line) and computed (blue line) time histories ),( tvz x  at 

surface point P4 (ideal elastic case (a) and Models 2 and 3 (b, c)); 240=cf  kHz. 
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4. Conclusions 
Analytically-based computational model for the simulation of elastic GW phenomenon in 
anisotropic linear viscoelastic layered waveguides has been implemented. Assuming 
complex-valued elastic moduli, it is capable to evaluate frequency and direction dependencies 
of GW dispersion properties and viscosity-conditioned attenuation. To assure the applicability 
of the developed model to realistic composite materials, experimental investigations for a 
unidirectional carbon FRP sample have been performed. Preliminarily, complex elastic 
constants have been estimated from experimental decay curves for fundamental GWs 
propagating along material symmetry axes. To handle the observed severe damping of the 
antisymmetric wave A0 in the direction perpendicular to fiber alignment, additional tuning of 
the hysteretic model has been proposed. Comparing measured and computed time histories of 
PWAS excited GWs, the model adequacy is confirmed.  

For the future work, more sophisticated laminate lay-ups, i.e., cross-ply and quasi-
isotropic ones, will be investigated and the problem of the SHM sensor network design 
(number and location of sensors) in the sense of additional material-conditioned GW damping 
will be considered. 
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