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Abstract. A simple and accurate model of foam hydraulic fracturing is developed with both 
compressibility and rheology being taken into account. The governing equations for a 
compressible power-law fracturing fluid are derived for the classical PKN fracture geometry. 
Numerical simulations reveal an influence of compressibility and rheology on the temporal 
evolution of the fracture opening. 
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1. Introduction 
Foam fracturing modern technique of the hydraulic fracturing looks promising due to several 
advantages: foam minimizes usage of liquid, limits fluid retention in the formation and has 
better proppant transport properties due to its high viscosity. However, a modeling of foam 
faces serious difficulties. Apart from the foam saturation and stability, it is necessary to take 
into account compressibility and non-Newtonian character of the foam viscosity. Moreover, 
foam contains both liquid and gas parts. Taking into account all these factors is a difficult 
task. The compressibility of foam is usually introduced through its quality or the importance 
of the gas part [1 – 4]. Modeling of viscosity is simpler for incompressible fluids [4 – 9], and 
for compressible foam experimental data is usually used to fit power-law model [10, 11].  

Existing models of foam fracturing could be divided into two groups. The first group 
uses simpler considerations and models foam as a single-phase fluid with effective properties 
depending on the foam quality and pressure. Gu's and Mohanty's model [12] is neglecting 
changing density of the foam and models its properties by relations for the power-law 
parameters depending on the fluid pressure in the fracture and given constant quality of the 
foam. For the two-dimensional model, it results in a difference in geometries of the fracture 
with the same fracturing conditions but different chosen foam qualities, while the total 
volume of the fracture remains constant. Another model, Park's approach [13], accounts for 
compressibility of foam by adding formation volume factor to the time-depended term in the 
continuity equation. Wang's et al. model [3] allows investigating influence of compressibility 
of fracturing fluid using linear density-pressure relation. 

The second group of models is considering foam as a multi-phase fluid under different 
assumptions (e.g. dimensions, pressure, temperature, solubility etc.) [10, 11, 14]. The systems 
of governing equations for these models became more accurate, but at the same time they 
became noticeably more complex, requiring more setting parameters and increasing time of 
calculations, especially for three-dimensional cases. 
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Our goal is to develop quite simple and fast but accurate model of foam fracturing, 
which takes into account fluid compressibility and non-Newtonian character of its viscosity 
by introducing both density-quality and rheology-quality relations. The governing equations 
are derived for the classical PKN [15] fracture geometry in order to develop two-dimensional 
model and qualitatively investigate it using numerical simulation. 
 
2. Governing equations 
We consider a problem of a hydraulic fracture propagation driven by injection of 
compressible non-Newtonian fluid in an infinite homogenous linear elastic medium. The 
geometry of the problem presented in Fig. 1: 
 

 
Fig. 1. PKN fracture geometry 

 
This is a classical PKN [15] fracture geometry approach: the length of the fracture L is 

much greater than its constant height H, and height is much greater than fracture opening w. 
Then the approximate plane strain condition can be assumed in every plane orthogonal to the 
direction of propagation. Assuming that net pressure is independent of y-axis leads to 
elliptical fracture cross section. The fracture width along z-axis is then given by [15]: 
𝑤𝑤(𝑧𝑧, 𝑥𝑥, 𝑡𝑡) = 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛(𝑥𝑥, 𝑡𝑡) 1

𝐸𝐸′
√𝐻𝐻2 − 4𝑧𝑧2, (1) 

where E’  is defined as  
𝐸𝐸′ = 𝐺𝐺

1−𝜈𝜈
, 

𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑝𝑝 − 𝜎𝜎min, 𝑝𝑝 is fluid pressure, 𝜎𝜎min is minimum horizontal stress, 𝜈𝜈 is Poisson’s ratio,  
𝐺𝐺 is the shear modulus. 

It is assumed that density and pressure of foam are constant in the each fracture cross 
section: ρ = ρ(x,t), p = p(x,t). Under these assumptions and according to the fracture geometry 
the continuity equation is given by: 
𝜋𝜋𝜋𝜋
4

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚) + 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝜌𝜌) = 0, (2) 
where 𝑞𝑞 is the volumetric flow rate, 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 =  𝑤𝑤(0, 𝑥𝑥, 𝑡𝑡). 
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Equations of motions for single-phase fluid with one-dimensional flow in an elliptical 
fracture are reduced to the simple relation between volumetric flow rate and pressure gradient, 
neglecting inertial terms for Newtonian fluid: 
𝑞𝑞 = −𝜋𝜋𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚

3𝐻𝐻
64𝜇𝜇

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, (3) 
where 𝜇𝜇 is Newtonian viscosity. However, most investigations [16 – 19] are showing that 
foams rheology is well approximated by power-law models. That is why it can also be used 
another known relation for power law fluid motion in an elliptical fracture [20]: 

𝑞𝑞 = −𝜑𝜑(𝑛𝑛)𝐻𝐻(𝜋𝜋𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚)2𝑛𝑛+1 𝑛𝑛�

(2𝐾𝐾)1/𝑛𝑛 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
1/𝑛𝑛

sign �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�, (4) 

where sign(𝑥𝑥) is a signum function, 𝐾𝐾 is flow consistency index and 𝑛𝑛 is flow behavior index. 
Term 𝜑𝜑(𝑛𝑛) depends on the fracture’s cross section geometry and is derived as follows: 

 𝜑𝜑(𝑛𝑛) = 𝑛𝑛
2(2𝑛𝑛+1)𝐻𝐻 ∫ � 𝑤𝑤

𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚
�
2𝑛𝑛+1
𝑛𝑛 𝑑𝑑𝑑𝑑𝐻𝐻/2

−𝐻𝐻/2 . (5) 
For the elliptic cross section, the solution is known as [21]: 

 𝜑𝜑(𝑛𝑛) = 𝑛𝑛
2(2𝑛𝑛+1)

𝚪𝚪�4𝑛𝑛+12𝑛𝑛 �

𝚪𝚪�5𝑛𝑛+12𝑛𝑛 �
� 2
√𝜋𝜋
�
3𝑛𝑛+2
𝑛𝑛 , (6) 

where 𝚪𝚪(𝑥𝑥) is gamma-function. 
 
3. Foam compressibility model 
The quality of the foam Γ is introduced as [1, 2] 
Γ = 𝑉𝑉𝑔𝑔

𝑉𝑉𝑔𝑔+𝑉𝑉𝑙𝑙
, (7) 

where 𝑉𝑉𝑔𝑔 , 𝑉𝑉𝑙𝑙  are the volumes of the gas and liquid phases of the foam respectively. The 
presence of a gas phase makes foams highly compressible. Indeed, for isothermal processes 
the Boyle’s law is 
𝑝𝑝0𝑉𝑉0𝑔𝑔  =  𝑝𝑝 𝑉𝑉𝑔𝑔 , (8) 
where 𝑝𝑝0 is the injection pressure in our case, 𝑉𝑉0𝑔𝑔 is initial volume of gas phase. It follows 
from Eqs. (7), (8) that 
𝑝𝑝
𝑝𝑝0

= Γ0(1−Γ)𝑉𝑉0𝑙𝑙
(1−Γ0)Γ𝑉𝑉𝑙𝑙

, (9) 
where Γ0 is the foam injection quality, 𝑉𝑉0𝑙𝑙 is initial volume of liquid phase. The density of the 
foam 𝜌𝜌 is defined as 
 𝜌𝜌 = 𝜌𝜌𝑙𝑙𝑉𝑉𝑙𝑙+𝜌𝜌𝑔𝑔𝑉𝑉𝑔𝑔

𝑉𝑉𝑙𝑙+𝑉𝑉𝑔𝑔
= (1 − Γ)𝜌𝜌𝑙𝑙 + Γ𝜌𝜌𝑔𝑔. (10) 

Equation (9) allows us to express quality through the pressure p. Substitution of the 
resulting expression into Eq. (10) gives rise to the connection between density and pressure, 
 𝜌𝜌 = Γ0𝑝𝑝0

Γ0𝑝𝑝0+(1−Γ0)𝑝𝑝
𝜌𝜌𝑔𝑔 + (1−Γ0)𝑝𝑝

Γ0𝑝𝑝0+(1−Γ0)𝑝𝑝
𝜌𝜌𝑙𝑙. (11) 

The second term in Eq. (11) is negligibly small for low quality foams due to 𝜌𝜌𝑔𝑔
𝜌𝜌𝑙𝑙
≪ 1. 

Then the compressibility relationship is 
 𝜌𝜌 = (1−Γ0)𝑝𝑝

Γ0𝑝𝑝0+(1−Γ0)𝑝𝑝
𝜌𝜌𝑙𝑙. (12) 

However, for the high quality foam the density of gas becomes comparable with the 
density of the liquid phase, so at least an estimation for ρg is needed. We assume that the value 
of ρg can be simply estimated as the density of an ideal gas at the defined values of pressure 
and temperature 𝑇𝑇: 
 𝜌𝜌𝑔𝑔 = 𝑀𝑀𝑀𝑀

𝑅𝑅𝑅𝑅
, (13) 
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where M = 28 g/mol for N2 and M = 44 g/mol for CO2, 𝑅𝑅 is ideal gas constant. As we consider 
isothermal case, the averaged temperature of the reservoir is assumed to be known and used 
in Eq. (13). 
 
4. Foam rheology model 
We consider foams as non-Newtonian fluids by using known models that predict power law 
parameters of the foam as functions of quality. In presented work we are using known 
empirical correlations [22] for K(Γ) and n(Γ). 

The correlation for 20-lbm/Mgal foam is: 
n = n0(1 − 2.1006Γ7.3003),  K = K0 exp(−1.9913Γ + 8.9722Γ2) (14) 

The correlation for 30-lbm/Mgal foam is: 
n = n0(1 − 0.1535Γ6.5152),  K = K0 exp(−2.3761Γ + 8.8830Γ2) (15) 

The correlation for 40-lbm/Mgal foam is: 
n = n0(1 − 0.6633Γ5.1680),  K = K0 exp(−0.4891Γ + 5.6203Γ2) (16) 

K0 and n0 are constant power law parameters of the base fluid which are assumed to be 
known. It should be noted that any other known correlations (e.g., Ref. [16 – 19]) for K(Γ), 
n(Γ) may be used instead of Eqs. (14), (15) and (16). It is also possible to use Newtonian µ(Γ) 
correlations (e.g., Ref. [5, 23]) with Eq. (3) in order to simplify the model. 

 
5. Numerical simulation 
Equations (1), (2), (4), (6), (11), (13) and relations (14), (15) or (16) together form a closed 
system of equations and can be modified to a single pressure or a fracture width equation. It 
can be solved implicitly using FDM with inner iterations. The boundary conditions are: 
𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑡𝑡)|𝑥𝑥=𝐿𝐿 = 0, 
𝜌𝜌𝜌𝜌|𝑥𝑥=0 = 𝑄𝑄𝑖𝑖𝑖𝑖, 
where 𝑄𝑄𝑖𝑖𝑖𝑖  is an inlet mass flow rate. Fracture length L(t) is evaluated as follows: 
𝐿𝐿(𝑡𝑡) = min�𝑥𝑥|𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥)=0�. (17) 

The initial condition is a closed fracture: 
𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 0) = 0. 

Following hydraulic fracturing parameters are chosen to be fixed during the numerical 
simulations in order to investigate the dependence of the initial foam quality and its rheology 
on the fracture geometry: 

Qin = 1.5 kg/s, P0 = 1 MPa, 
ρl = 1000 kg/m3,   K0 = 0.01 Pa · s,    n0 = 1, 

E’ = 25 GPa,   H = 20 m,   σ = 1MPa 
Firstly, we are studying the influence of rheology relations defined by Eqs. (14), (15) 

and (16) for the different initial foam qualities by comparing obtained numerical results with 
the constant viscosity case (K(Γ) = K0 = const, n(Γ) = n0 = const). The fracture width 
distributions along L at t = 1000 s are shown for Γ0 = 0.25, Γ0 = 0.5 and Γ0 = 0.75 in Fig. 2, 
Fig. 3, Fig. 4 respectively. For this set of initial parameters non-Newtonian character of the 
foam viscosity starts to influence fracture geometry at Γ0 = 0.5, and its influence become 
essential for the case Γ0 = 0.75: fracture width is increasing while the fracture length 
decreases. In addition, it is shown that for different foams (20, 30 and 40lbm/Mgal) fracture 
geometry is changing not significantly. 
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Fig. 2. Fracture width distribution for initial foam quality 0.25 

 

 
Fig. 3. Fracture width distribution for initial foam quality 0.5 
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Fig. 4. Fracture width distribution for initial foam quality 0.75 

 
Secondly, we investigate the compressibility factor influence on the fracture geometry. 

Considering constant viscosity K(Γ) = K0 = const, n(Γ) = n0 = const for all the simulations we 
compare fracture propagation process for incompressible fluid (Fig. 5), compressible  
CO2–foam with Γ0 = 0.25 (Fig. 6), Γ0 = 0.5 (Fig. 7) and Γ0 = 0.75 (Fig. 8) at 50K–temperature 
cases. The numerical results show that increasing of initial foam quality leads to an increase 
in the final volume of the fracture for similar mass flow rate. For Γ0 = 0.25 overall calculated 
mass fraction of pumped gas in foam is equal to ∼ 0.54%, for Γ0 = 0.5 this value  
reaches ∼ 1.54%, and for Γ0 = 0.75 is ∼ 4.69%. 

 

 
 

Fig. 5. Fracture growth for incompressible fluid 
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Fig. 6. Fracture growth for 0.25-quality foam (no rheology) 
 

 
 

Fig. 7. Fracture growth for 0.5-quality foam (no rheology) 
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Fig. 8. Fracture growth for 0.75-quality foam (no rheology) 
 

Also it should be noted that assuming Γ0 = 0 and n(Γ) = 1 (the case corresponding to 
Fig. 5) the model reduces to classical PKN model for an incompressible fracturing fluid 
without leak-off. 

Finally we present the numerical results (Fig. 9) for 0.75-quality 30-lbm/Mgal foam 
(rheology is defined by Eq. 15). Comparing to the no-rheology case (Fig. 8) the modeling 
results show that the length of the fracture is decreasing while the fracture width increases. 

 

 
 

Fig. 9. Fracture growth for 0.75-quality 30-lbm/Mgal foam 
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6. Conclusion 
The two-dimensional model of foam fracturing is presented. It takes into account fluid 
compressibility and non-Newtonian character of its viscosity by introducing density-quality 
relation based on the Boyle’s law and rheology-quality correlations. This model allows to 
calculate fracture geometry for the foams with different quality at given pressure. Both 
rheology and compressibility properties have been studied independently and together. The 
developed model shows that for higher quality foam it is expected to produce a fracture with 
higher opening value and lower length due to rheology properties, and with greater volume 
for the same mass of pumped foam due to compressibility. Due to the simplicity of the 
introduced system of equations, it is expected that one may develop fast and accurate 
pseudo3D foam fracturing model based on the presented model. 

However, the presented model does not take into account very important aspects of 
hydraulic fracturing, such as leak-off and proppant transport. Future generalization of the 
problem implies not only conversion to pseudo3D-geometry, but also consideration of 
proppant transport, its influence on the foam rheology and adding multi-phase leak-off terms 
to the governing equations. 
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