TETRAHEDRAL MINI- AND MIDI-FULLERENES

Received: January 31, 2018

Alexander I. Melker^{1*}, Sergey A. Starovoitov², Ruslan M. Zarafutdinov¹

¹Department of Mechanics and Control Processes, ²Department of Experimental Physics
Peter the Great St. Petersburg Polytechnic University, Polytekhnicheskaya 29

195251, St. Petersburg, Russian Federation

*e-mail: newton@imop.spbstu.ru

c-man. newton@mop.spostu.ru

Abstract. We have considered possible ways of forming the simplest tetrahedral fullerenes, namely elementary tetrahedron C_4 , truncated tetrahedron C_{12} , half-truncated cube C_{16} , fullerenes C_{28} and C_{36} . By analogy with ionic crystals, we introduced "mathematical" compounds, which form a topological cube of two tetrahedra inserted into each other, and construct graphs for them. Combined with the graph analysis, this approach allows obtain a clear knowledge of the tetrahedral fullerene structure. We extended our model to other tetrahedral fullerenes, in particular, tetrahedral fullerenes C_{64} and C_{76} .

Keywords: energy, fusion reaction, graph representation, growth, mathematical compound, periodic system, tetrahedral fullerene, topological cube

1. Introduction

The periodic system of fullerenes, based on symmetry principles, consists of horizontal series and vertical columns. The horizontal series form the Δn periodicities, where the fullerene structure changes from threefold symmetry to sevenfold through four, five and sixfold ones. The system leaves room for the following series: $\Delta n=2$, 4, 6, 8, 10, 12, 14, 16, 18, 20 and may incorporate into it carbon clusters, nanotubes and fullerenes from C_2 to C_{140} . However, it is known that there are fullerenes with tetrahedral structure [1 and references therein]. To complete the system, it is necessary to add these fullerenes to the periodic system.

The question arises how to do it. We only know some separate tetrahedral fullerenes which are not connected with each other. We do not know whether the connection laws, established for the fullerenes incorporated into the periodic system, are valid for such fullerenes. In other words, we know almost nothing. For this reason, we will follow the action plan outlined in Ref. [2], namely, "the next step in our investigation is obtaining the structure and energy of missing fullerenes with the purpose to incorporate the missing known and unknown fullerenes into the periodic system". What kind of missing fullerenes it necessary to design, first of all? To our mind, it is essential to begin with the simplest ones and to develop, similar to Ref. [3], the algorithm of the fullerene growth for the fullerenes conserving the tetrahedral symmetry. Then the fullerenes obtained should be arranged to give a successive growing array. What is wanted is the law which connects the nearest neighbors.

In the periodic system of fullerenes the vertical columns (groups) include the fullerenes of one and the same symmetry, the mass difference Δm for each column being equal to a double degree of symmetry. In this contribution we have tried to construct a similar column for the tetrahedral fullerenes and to define its Δm index.

2. The simplest known tetrahedral fullerenes

Folding and growth by adding dimers. We begin with cluster CC_3 as one of the germs of future carbon structures. The possible ways of its formation are considered in Ref. [4]. If the further growth is suppressed, the cluster is compelled to fold creating a tetrahedron, the energy being depended on its electronic structure (Fig. 1). If the growth is possible, there are different ways of growing. In particular, the cluster can transform into a cupola adding carbon dimers (Fig. 2). In a similar manner, one may imagine the growth of cluster C_3 . The process is shown in Fig. 3. Here we have threefold cluster and threefold cupola C_{12} , and tetrahedral fullerene C_{12} .

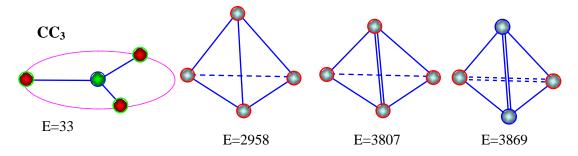


Fig. 1. Folding CC₃ cluster into tetrahedra; energy in kJ/mol. Dark-red balls are reacting atoms; other color atoms are neutral ones

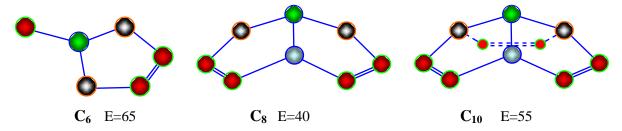


Fig. 2. Growth of cluster CC₃ and formation of a cupola; energy in kJ/mol

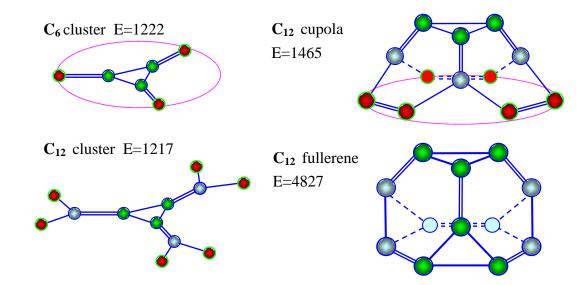


Fig. 3. Growth of cluster C₃ and formation of a cupola and a fullerene: some triangle atoms showing three-hold and tetrahedral symmetry are marked with green; energy in kJ/mol

Fusion reactions. The structure of tetrahedral fullerene C_{16} was designed elsewhere [5]. It is a half-truncated cube and can be obtained by adding cluster C_4 to cupola C_{12} (Fig. 4).

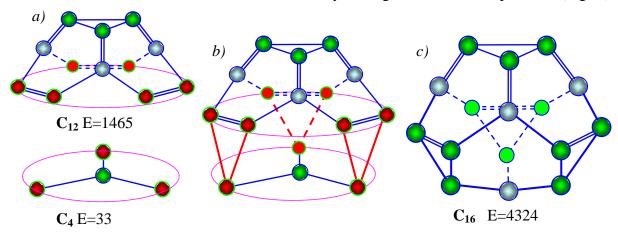


Fig. 4. Fusion of cluster C₄ with cupola C₁₂: (*a*) Separate species; (*b*) Intermediate compound; (*c*) Fullerene C₁₆ after relaxation. Red and blue balls are reacting and neutral atoms, respectively; blue solid and dashed lines are old covalent bonds; red solid and dashed lines are new ones; atoms showing tetrahedral symmetry are marked with green; energy in kJ/mol

The next and last known tetrahedral mini-fullerene is C_{28} . Its structure was suggested in Ref. [6]. The possible way of the realization is shown in Fig. 5. It is a fusion reaction of cupola C_{10} and bowl C_{18} , which can be written in the form $C_{10} + C_{18} \rightarrow (C_{10}C_{18}) \rightarrow C_{28}$.

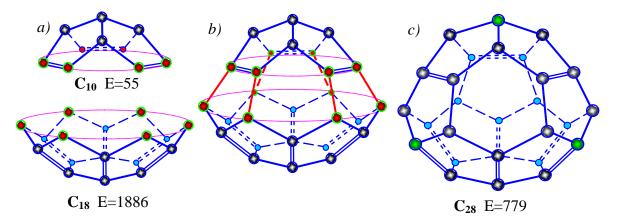


Fig. 5. Fusion of cupola C_{10} with bowl C_{18} and formation of fullerene C_{28} ; all notations are the same as before; energy in kJ/mol

3. A new tetrahedral midi-fullerene

For completeness sake, it is desirable to add to the simplest fullerenes one more fullerene C_{36} . It can be imagined as a truncated fullerene C_{28} . The situation is similar to that of a tetrahedron and a truncated tetrahedron, C_4 and C_{12} . But how the truncated tetrahedral fullerene C_{36} can be obtained naturally?

Let us consider the structure of fullerene C_{28} . It is seen from Fig. 5 that this fullerene consists of two parts: the bottom part, or bowl C_{18} , having six-fold symmetry and the upper part, or cupola C_{10} , with three-fold symmetry. By analogy, it seems reasonable to take bowl C_{24} and truncated cupola C_{12} as constituents for producing the tetrahedral fullerene C_{36} . The corresponding reaction $C_{12} + C_{24} \rightarrow (C_{12}C_{24}) \rightarrow C_{36}$ is illustrated in Fig. 6. To gain a better understanding of the tetrahedral symmetry, the triangle atoms are specially marked with green.

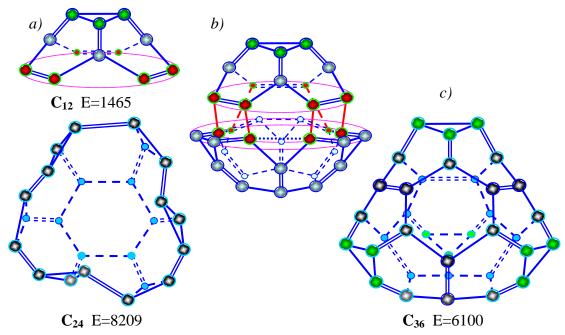


Fig. 6. Fusion of cupola C_{12} with bowl C_{24} : separate species (a); intermediate compound (b); fullerene C_{36} after relaxation (c); old covalent bonds to be destroyed are blew dotted lines, other notations are the same as before

4. Graph representation

Consider the graphs which characterize the formation of the tetrahedral mini-fullerenes. We have five fullerenes: C_4 , C_{12} , C_{16} , C_{28} , and C_{36} . Their graphs are shown in Figs. 7 and 8.

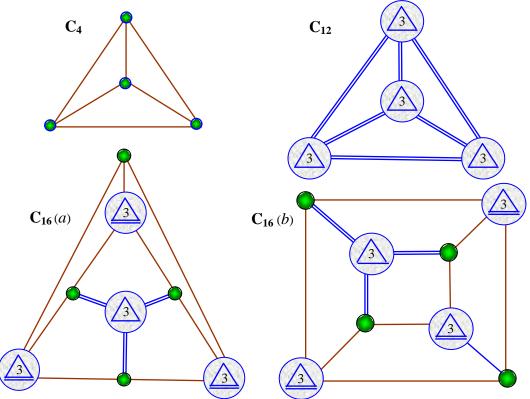


Fig. 7. Graphs of mini-fullerenes C_4 , C_{12} and C_{16} : light-turquoise ball are simple vertices (one-atomic); grey circles are big-size vertices (atom clusters); symbols and numbers inside the circles indicate the number of atoms in a cluster as well as the number of single (brown color) and double (blue color) bonds

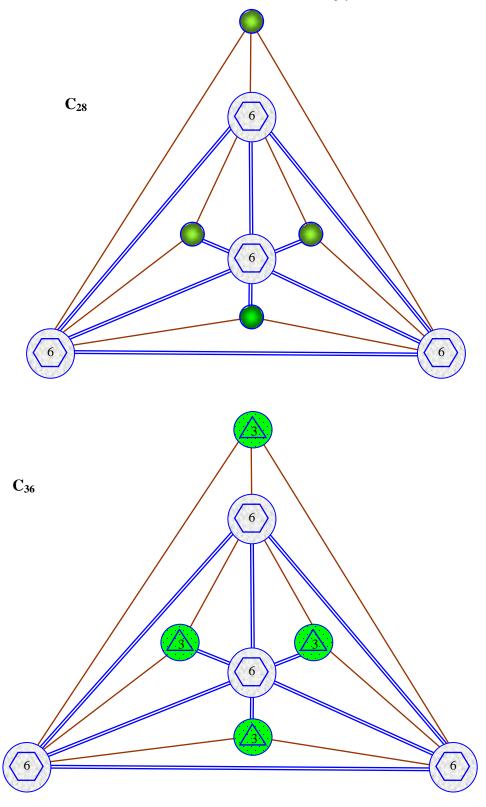


Fig. 8. Graphs of mini-fullerene C_{28} and midi-fullerene C_{36} : light-turquoise ball are simple vertices (one-atomic); grey and green circles are big-size vertices (atom clusters); other notations are the same as before

Here different presentations of the fullerenes are given. The reason is as follows. It would endeavor natural to illustrate the structure of a graph considered with the help of lesser–size graphs having more simple structure. Hence, for tetrahedron C₄ it is a routine

graph, each vertex (zero-size point) corresponding to one carbon atom. For truncated tetrahedron C_{12} we used the innovation to the graph theory developed in Ref. [4]. Here each vertex (big-size point) agrees to a cluster of three atoms. In this case we obtain a graph, which is identical to the graph of a simple tetrahedron. It is worth noting that such approach allows do some operations with such graph in the same manner as with a usual graph that simplifies an analysis.

It should be emphasized that in Ref. [4], where the innovation was first presented, a distinction is not made between single and double bonds, so all the edges were identical. Here we use two kinds of edges, single and double, so the graphs presented reflect not only geometry (atomic structure), but also electronic one. It allows gain a more penetrating insight into the fullerene structure, and therefore to study them more elaborately.

For truncated cube C_{16} , we utilize both kinds of vertices, one-atomic and atom-cluster, as well as both kinds of edges, single and double bonds. The left-hand graph coincides with a tetrahedral symmetry; it shows that the structure is composed of two tetrahedra inserted into each other. The right-hand graph reflects a cubic symmetry.

In a similar manner, the graphs are designed for fullerenes C_{28} and C_{36} . From the graphs it follows that their structure is also composed of two tetrahedra inserted into each other.

5. Summary and discussion

We have considered possible ways of forming the simplest tetrahedral fullerenes, namely elementary tetrahedron C_4 , truncated tetrahedron C_{12} , half-truncated cube C_{16} , fullerenes C_{28} and C_{36} . We assume that tetrahedron C_4 could be produced by folding cluster CC_3 under high pressure similar to diamond. It has three different electronic isomers, which differ in number of single and double bonds, and therefore in energy.

The growth of truncated tetrahedron C_{12} is a more complex process. It can be envisaged as a successive increase of cluster CC_3 through appearance of intermediate clusters C_6 , C_8 and C_{10} ; and by folding the final cluster C_{12} . Another way is the appearance of cupola C_{12} and folding it. Since the energies of the cluster and cupola are close to each other, both ways seem probable.

The formation of fullerene C_{16} is designed as the fusion of cluster C_4 with cupola C_{12} . From the graph of this fullerene it follows that its structure is composed of two tetrahedra inserted into each other. It is worth noting that in this case two species, entering into the reaction, conserve its own electronic structure. As a result, we obtain the fullerene, in which electronic and atomic configurations do not coincide, and we have so called hidden symmetry. This situation is thoroughly analyzed in Ref. [2].

Fullerene C_{28} was suggested by Nobel Prize winner H.W. Kroto [6] as one of fullerenes having magic number of enhanced stability. He is also thoroughly discussed its possible electronic structure. To his mind, "the stability depends on the ability of spare electrons on the four carbon atoms at the centers of the four ten-atom configurations of adjoined pentagons to stabilize by configuration". These four electrons are the nearest neighbors of an atom marked with green in Fig. 5. We have obtained fullerene C_{28} using the fusion reaction $C_{10} + C_{18} \rightarrow (C_{10}C_{18}) \rightarrow C_{28}$. It has the energy 749 kJ/mol. It is not the only one way of generation. In other study, where we modeled the formation of fullerene C_{28} similar to the growth and folding of cupola C_{12} , the electronic structure of some of such four carbon atoms was changed. As a result, we have obtained 1399 kJ/mol and a less distorted structure, more close to a sphere.

Fullerene C_{36} is a truncated fullerene C_{28} . It was imagined at first by analogy with truncated-tetrahedron fullerene C_{12} and only afterwards a possible fusion reaction was found.

Analogy with ionic crystals. From the geometry standpoint, fullerenes C_4 and C_{12} are simple tetrahedra. Beginning with fullerene C_{16} , they are composed of two tetrahedra inserted

into each other. In nature there are alkali-haloid compounds (ionic crystals A_1B_7), which crystallize in f.c.c. structure, which is called the structure of NaCl type. However, in this structure it is possible to isolate a primitive cube of two tetrahedra inserted into each other, each tetrahedron having the atoms of only one kind (Fig. 9). The plane graph of such cube is shown in Fig. 10.



Fig. 9. Tetrahedra of NaCl type structure

Fig. 10. Plane graph of a primitive cube in the NaCl structure

By analogy, we can imagine "mathematical" compound, which forms a topological cube of two tetrahedra inserted into each other, and construct graphs for it. In this case, instead of atoms one has clusters of two kinds. Strictly speaking, we have already considered this possibility for the simplest fullerene C_{16} , having two tetrahedra (Fig. 7, C_{16} b). For this fullerene two plane graphs, shown in Fig. 7, are isomorphic. In ionic crystals A_1B_7 (alkalihaloid compounds), the inferior index denotes the number of valence electrons, which are able to take part in reactions. By analogy, for our mathematical compound, fullerene C_{16} , we can write the 'chemical' formula in the form A_1B_3 . However, here the inferior index denotes the number of atoms in each tetrahedron interacting with atoms of another tetrahedron. For example, the tetrahedral fullerenes studied in this research, C_{28} and C_{36} ; have the formulas A_1B_6 and A_3B_6 , respectively. Combined with the graph analysis, one can obtain a clear knowledge of the tetrahedral fullerene structure.

We can extend this model to a broad spectrum of tetrahedral fullerenes. Consider, for example, tetrahedral fullerenes C_{64} and C_{76} , their structure being given in Ref. [1]. Fullerene C_{64} contains 12 squares, 10 hexagons and 12 heptagons. Each face of the structure is formed by 3 adjoined heptagons, which are surrounded by 6 squares and 6 hexagons. Fullerene C_{76} contains 24 pentagons, 4 hexagons and 12 heptagons. Each face of the structure is formed by one hexagon, surrounded by 3 pentagons and 3 heptagons. Such description gives detail, but does not allow find correlation between the fullerenes.

We have designed the graphs for these fullerenes by analogy with that of fullerene C_{36} . They are presented in Fig. 11. Since we do know the history of fullerene designing, there is no distinction between chemical single and double bonds. This problem is beyond the scope of geometry. It is necessary to do some elucidation of the symbols used. The correspondence between graph symbols and atomic structure is shown in Fig. 12.

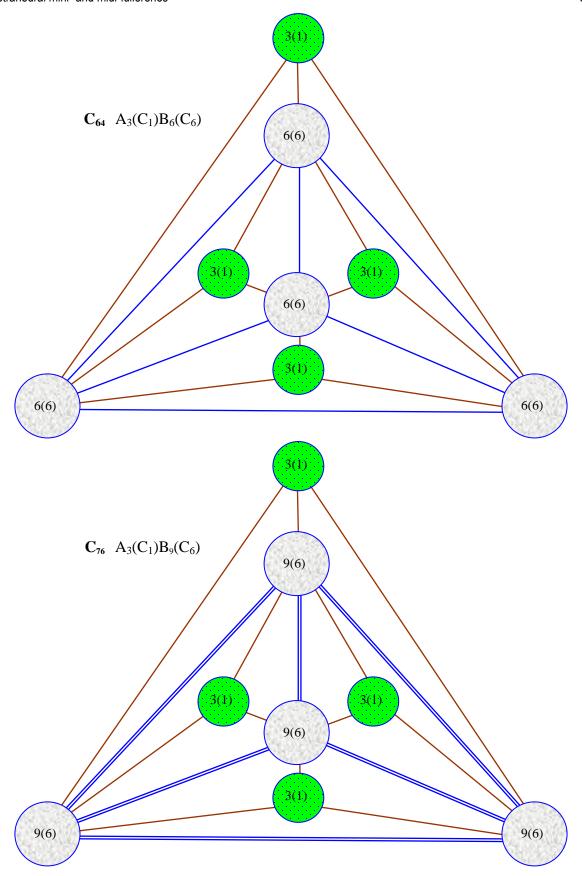


Fig. 11. Graphs of midi-fullerenes C_{64} and C_{76}

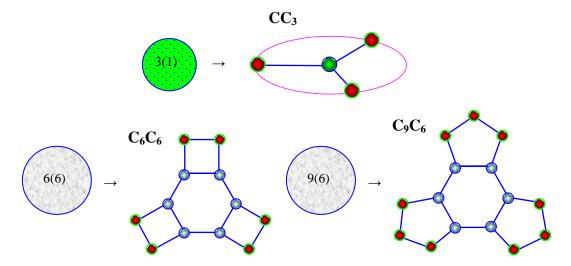


Fig. 12. Graph symbols and their relation to atomic structure

From this figure it follows that only outer atoms of atom clusters take part in the interaction with other atom clusters. In other words, the big-size vertices of graphs, characterizing the structure of fullerenes C_{64} and C_{76} , are more complex than those of fullerene C_{36} . To emphasize this fact, we have changed the chemical formulas of these fullerenes, and write them as $A_3(C_1)B_6(C_6)$ and $A_3(C_1)B_9(C_6)$. Here the additional symbol C refers to inner, passive core atoms. It must be also emphasized that double lines in the graph for fullerene C_{76} do not refer to double chemical bonds. As we mentioned above, we do not know the electronic structure of this fullerene. These lines only show that apices 9(6) are connected between themselves by two edges.

Search for periodicity. The aim of our study is to find the mass difference Δ m-index for tetrahedral fullerenes with the purpose to incorporate this fullerene group into the periodic system of fullerenes. Now we have the following information:

Fullerenes	Chemical formula	Number of atoms
C_4	A_1	4°1=4
C_{12}	\mathbf{B}_3	4°3=12
C_{16}	A_1B_3	40(1+3)=16
C_{28}	A_1B_6	40(1+6)=28
C_{36}	A_3B_6	4\circ(3+6)=36
C_{64}	$A_3(C_1)B_6(C_6)$	4°[(3+1)+(6+6)]=64
C_{76}	$A_3(C_1)B_9(C_6)$	4 • [(3+1)+(9+6)]=76

This allows do some predictions.

The mass difference for these fullerenes can be written as $\Delta m = 8, 4, 12, 8, 28, 12$. It is clear that the gap between fullerenes C_{36} and C_{64} is too large. However it can be decreased by the following way. Let us change in formula A_3B_6 for fullerene C_{36} component A_3 to component $A_3(C_1)$. Then we obtain fullerene C_{40} , in which instead of 12 hexagons there will be 12 heptagons. In a similar way, changing component $A_3(C_1)$ in formula $A_3(C_1)B_6(C_6)$ for fullerene C_{64} with component A_3 creates fullerene C_{60} . As a result, we have now the following data series: $\Delta m = 8, 4, 12, 8, 4, 20, 4, 12$. Although the gap became less, it is nevertheless is again large. Probably it is worth to search after fullerene C_{48} or C_{52} , or both.

Acknowledgements. No external funding was received for this study.

References

- [1] Sanchez-Bernabe FJ. Three examples of nonclassical fullerenes with tetragonal structure. *Informatics, Electronics and Microsystems: TechConnect Briefs.* 2017;4: 5-7.
- [2] Melker AI, Vorobyeva TV. Structure and energy of the $\Delta n=14$ fullerenes. *Int. J. Atomic and Nuclear Physics*. 2018;3: 008.
- [3] Melker AI, Krupina MA. Geometric modeling of midi-fullerene growth from C₃₂ to C₆₀. St. Petersburg State Polytechnical University Journal: Physics and Mathematics. 2017;10(1): 47-54.
- [4] Melker AI, Starovoitov SA, Vorobyeva TV. Classification of mini-fullerenes on graph basis. *Materials Physics and Mechanics*. 2014;20(1): 12-17.
- [5] Melker AI, Lonch V. Atomic and electronic structure of mini-fullerenes: from four to twenty. *Materials Physics and Mechanics*. 2012;13(1): 22-36.
- [6] Kroto HW. The stability of the fullerenes C_n , with n=24, 28, 32, 36, 60, 60 and 70. *Nature*. 1987;329: 529-531.