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Abstract. In the present work, the pair interaction of coaxial circular prismatic dislocation 
loops (PDLs) arbitrary placed in elastic solids with free spherical surfaces is considered. The 
analytical solutions for the pair interaction energies of PDLs in an elastic sphere, an elastic 
medium with a spherical pore and a spherical layer are given in the form of double power 
series and illustrated by energy maps built in the space of the normalized PDL radii and axial 
positions. The results can be used for analyzing the theoretical models of stress relaxation 
processes in bulk and hollow core-shell nanoparticles and pentagonal particles, which occur 
through the formation of dislocation ensembles. 
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1. Introduction 
Dislocation loops are typical defects in solids, which play a significant role in the physics and 
micromechanics of crystalline materials [1,2]. In particular, the formation of prismatic 
dislocation loops (PDLs) is one of the main mechanisms of elastic strain and stress relaxation 
in solid-state structures containing inhomogeneities and pores. For instance, the ensembles of 
concentric PDLs lying in the same plane and encircling the highly compressed precipitates in 
gadolinium gallium garnet crystals were examined by optical microscopy in [3,4]. 
Subsequently, this mechanism was theoretically described in [5] for the case of generation of 
a single PDL encircled spherical inclusion. The generation of a misfit PDL at the interface of 
the dilatational spherical inclusion was theoretically investigated in [6]. Another relaxation 
mechanism is the punching of ensembles of coaxial PDLs by the inclusion to the matrix. It 
was observed experimentally in [7-9] and then studied by analytical calculations [10] and 
dislocation dynamics computer simulations [11]. The generation of satellite PDLs as the 
effective relaxation mechanism in GaAs films containing As-Sb clusters subjected to one-
dimensional dilatation eigenstrain was experimentally [12,13] and theoretically [14,15] 
investigated.  

To analyze the critical conditions of PDL formation, the authors of the aforementioned 
theoretical models [5,6,10,14,15] used the well-known solution for the strain energy of a PDL 
in an infinite homogeneous elastic medium, given by Dundurs and Salamon [16], in which 
case the image force effects on the relaxation processes were neglected. This limitation could 
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be overcome by using strict analytical solutions of relevant boundary-value problems in the 
theory of elasticity for PDLs in solids with spherical surfaces/interfaces. 

By now, some strict analytical solutions describing the elastic fields and energies of  
circular PDLs in an infinite medium [16-18], near a flat free surface [19] and a planar 
interface [16,20], in thin plates [21,22], in homogeneous [23-25] and heterogenous core-shell 
[26] cylinders as well as in solids with spherical boundaries [27-31] have been fairly well 
discussed. The displacement field of a circular PDL in an elastic sphere was first presented 
in  [27]. The elastic fields and energy of a circular PDL coaxial to the spherical pore in an 
infinite medium were obtained in [28] that allowed to analyze a critical condition for 
punching of a single PDL by the bubbles (pores under pressure) and verified these results 
with experimental observations of PDL ensembles in irradiated materials containing helium 
[32,33] or hydrogen [34] in bubbles. Recently, similar solution has been suggested to use in 
dislocation dynamics computer simulations [31]. The case of dislocation emission induced by 
the spherical pore under remote loading was also studied by molecular dynamics 
simulations [35,36].  

The displacement field of a circular dislocation loop occupying an arbitrary position 
inside an elastically inhomogeneous core-shell spherical particle was found in [29]. The 
solution was given in the form of double series of vector functions with unknown coefficients 
which have to be determined by solving an infinite system of algebraic equations. The authors 
of [29] demonstrated their analytical results with a numerical calculation of the image force 
acting on a PDL symmetrically placed in the core that seems difficult to use in physical 
applications.  

A more applicable solution, from our point of view, is presented in [30] where the stress 
field of a circular PDL is obtained in terms of the Legendre polynomials series for the 
following cases: an elastic sphere, an infinite elastic medium with a spherical pore, and an 
elastic spherical layer with free surfaces. The corresponding solutions have been applied for 
analyzing the initial stages of stress relaxation processes through the formation of individual 
PDLs in bulk [37] and hollow [38] core-shell nanoparticles, in icosahedral [39] and 
decahedral [40,41] small particles (see also a brief review [42]). These theoretical models give 
results which are in good agreement with experimental data [43,44].  

Thus, the aforementioned strict analytical solutions have been used for analyzing the 
critical conditions of stress relaxation through generation of individual PDLs. However, both 
the experimental examinations and computer simulations show that, in many real structures, a 
number of similar PDLs can nucleate and behave in tight interaction with each other, which 
requires the development of suitable mathematical means for studying these situations. One of 
such means is the energy of pair interactions between PDLs.  

In the present work, we consider the interaction of two coaxial circular PDLs arbitrary 
placed in different elastic bodies with free spherical surfaces such as an elastic sphere, an 
elastic medium with a spherical pore, and a spherical layer. Using the strict analytical solution 
of the boundary-value problem for a circular PDL in an elastic sphere [30], we find an 
analytical form for the interaction energy and illustrate this result by energy maps built in the 
space of the normalized PDL radii and axial positions. In our further work, we are going to 
use these results in analyzing theoretical models of stress relaxation processes in core-shell 
nanoparticles and pentagonal particles, which occur through the formation of various 
dislocation ensembles. 
 
2. Model 
Consider an elastically isotropic spherical layer with inner and outer radii ap and a, 
respectively, containing a pair of interstitials (for definiteness) circular PDLs which are 
characterized by the following plastic distortion component [45]: 
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( ) (1 / ) ( )k
zz k k kb H r c z zb δ= − − ,   k = 1, 2, (1) 

where bk is the Burgers vector magnitude of the PDL-k, H (t) is the Heaviside function, 
δ(z ‒ zk) is the Dirac delta function, ck is the radius of the PDL-k, and zk is its  
coordinate (see Fig. 1). 

The interaction energy 1 2
intW − between PDL-1 and PDL-2 in the spherical layer can be 

determined as the work spent to create the PDL-1 in the stress field )2(
zzσ of the PDL-2: 

1

1
1

1 2 (1) (2) (2) (2) (2)
1 1 1 1 1(1 / ) ( ) 2

c

int zz zz zz zz z z zzV V S
W dV b H r c z z dV b dS b rdr

ξ
b σ d σ σ π σ−

== = − − = =∫ ∫ ∫ ∫ , (2) 

where r is the polar radius; ξ = 0 in the case when the PDL-1 plane does not intersect the inner 
spherical surface, i.e. when z1 ≥ ap, and 2 2

1pa zξ = −  in the case when the PDL-1 plane 
intersects the inner spherical surface, i.e. when  z1 < ap. 

According to [30], the axial stress (2)
zzσ of PDL-2 in the elastic layer can be presented as 

a sum of the axial stress (2)
zzσ∞  of PDL-2 in an infinite elastic medium and an additional term 

* (2)
zzσ  which provides the fulfillment of the boundary conditions on the free spherical surfaces: 

 

 
Fig. 1. A pair of interstitial circular PDLs in a spherical layer. The corresponding coordinate 

system is located in the center of spherical surfaces 
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where G is the shear modulus, ν is the Poisson ratio, J(m,n;p) are the Lipchitz-Hankel 

integrals defined as ( ) 2 2 20
, ; ( ) ( / ) exp[ | | / ] p

m nJ m n p J J r c z z c dκ κ κ κ κ
∞

= − −∫ , Jm(κ) and 

Jn(κ r/c2) are the Bessel functions, (2)
nA , (2)

nB , (2)
nC , and (2)

nD are the coefficients determined in 
[30] from the boundary conditions on the free inner and outer spherical surfaces, and Pn(t) are 
the Legendre polynomials determined by the following explicit formula 
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Here t = cosθ, [n / 2] gives the greatest integer less than or equal to n / 2, and ( )n
s  are 

the binomial coefficients.  
Substituting (3a) to (2), we obtain after integration  
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Then one can simplify equations (3c-f) for * (2)
zzσ  by using the following recurrence 

relations for the Legendre polynomials [30]: 
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where 1 2( ) 1 ( ) /n nP t t dP t dt= − − . 
Substituting recurrence relations (6) to (3c), after some algebra we finally find 
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With Eq. (7) and taking into account that, for z = z1, the relations cosθ = z1 / R and 
r dr = R dR hold, integral (2) gives 
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where Qn,l and Tn,l are polynomials determined by equations 
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Here ζ = z1 if z1 ≥ ap, and ζ = ap if z1 < ap. 
Thus, the interaction energy 1 2

intW −  for PDL-1 and PDL-2 in the spherical layer  
is given by 

1 2 1 2 * 1 2
intW W W− ∞ − −= + , (10) 

where 1 2W∞ −  is determined by Eq. (5) and * 1 2W −  by Eqs. (8) and (9). 
 
3. Results 
To illustrate the results obtained, consider an example of the pair interaction between PDL-1, 
which has arbitrary radius c1 and axial position z1, and PDL-2 with fixed radius c2 = 100b2 
and axial position z2 = 0. Figures 2a-d show the maps of the interaction energy 1 2

intW −  in 
normalized coordinates of radius c1/c2 and axial position z1/c2 of PDL-1 in (a) an infinite 
medium, (b) an elastic sphere of radius a = 1.5c2, (c) an infinite medium with a spherical pore 
of radius ap = 0.5c2, and (d) a spherical layer of radii ap = 0.5c2 and a = 1.5c2. As is seen, the 
interaction energy of PDLs strongly depends on their radii and positions in the elastic body. 
Moreover, it is highly sensitive to the presence of the inner and outer free surface in the case 
when at least one of the PDLs is localized near the surface. It is worth noting that, in this case, 
the outer free surface makes a greater effect on the interaction energy than the inner free 
surface. The most evident and interesting manifestation of the outer surface effect is the 
region of negative values of the interaction energy near the equator and the outer free surface 
(at the right bottom corner of the maps in Figs. 2(b,d). It means that PDL-1 of radius 
0.9a < c1 < a is attracted to immobilized PDL-2 in this region, while in all the remaining area 
of the body, where the interaction energy is positive, PDL-1 is repulsed of PDL-2. In contrast, 
the inner free surface does not give such effect.  
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Fig. 2. The maps of pair interaction energy 1 2
intW −  for PDL-1 with arbitrary radius c1 and 

position z1 and PDL-2 of radius c2 = 100b2, placed in plane z2 = 0 in (a) an infinite medium,  
(b) an elastic sphere of radius a = 1.5c2, (c) an infinite medium with a spherical pore of radius 

ap = 0.5c2, and (d) a spherical layer of radii ap = 0.5c2 and a = 1.5c2.  
The energy is given in units Gb1b2c2 

 
4. Conclusions 
The phenomenon of pair interaction of circular PDLs in solids with spherical boundaries such 
as an elastic sphere, an infinite medium with a spherical pore, and a spherical layer with free 
surfaces is studied in detail. An explicit formula for interaction energy of two coaxial circular 
PDLs is obtained in the form of double power series. This result is illustrated by maps of the 
interaction energy in the space of PDL radii and axial positions. It is shown that the 
interaction energy of PDLs is strongly screened by free spherical surfaces when at least one of 
the PDLs is localized near the surface. The outer free surface makes a greater effect on the 
interaction energy than the inner free surface. In particular, there is a region near the equator 
and the outer free surface, where the interaction energy changes its sign. The inner free 
surface does not give such effect. Our results give an opportunity to analyze stress relaxation 
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processes through the generation of PDL ensembles in porous materials as well as bulk and 
hollow core-shell nanoparticles and pentagonal particles. 
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