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Abstract. In this paper, we consider a thin simply supported rectangular plate defined as
0<x<a, 0<y<b, 0<z<c and determined the temperature distribution function with heat

generation. The thermal stress components o, o, o, are evaluated due to thermal

bending moments. The results are obtained in the series forms in terms of trigonometric
function. Also two special cases for point heat source and moving heat source are considered.

1. Introdution

Y. Tanigawa et al. [6] discussed thermal stress analysis of a rectangular plate and its thermal
stress intensity factor for compressive stress field. M. Ishihara et al. [2] studied theoretical
analysis of residual stresses removed by heat supply. Further V.M. Vihak et al. [5]
investigated the solution of the plane thermoelastic problem for a rectangular domain.
R.J. Adams et al. [1] determined thermoelastic vibration of a laminated rectangular plate
subjected to a thermal shock. Gogulwar et al. [7] studied thermal stresses in a rectangular
plate due to partially distributed heat supply. Kulkarni et al. [8] deals with the realistic
problem of the quasi-static thermal stresses in a rectangular plate subjected to constant heat
supply on the extreme edges (x=a, y=b) whereas the initial edges (x=0, y=0) are thermally

insulated. Khandait et al. [9] determined the quasi-static thermal stresses in a finite thin
rectangular plate. Also Deshmukh and Khandait [10] studied a quasi-static problem in a
thermo-isotropic elasticity concerning on semi-infinite rectangular plate, when part of its
boundary kept at insulated and the rectangular plate being subjected to a concentrated heat
source located inside the plate. Alzaharnah [11] studied the thermal stresses in thick walled
cylinders subjected to a periodic moving heat source.

Recently, we considered a simply supported rectangular plate and discussed the
deflection with the help of resultant moment. Also, we evaluated the thermal stress
component due to thermal bending and shearing stress function.

In this paper, we discuss the thermal stress components due the thermal bending and
shearing stress function. Here we consider two different heat sources and discuss the
thermoelasticity.

2. Formation of the problem
Consider a rectangular parallelepiped with its dimensions 0<x<a, 0<y<b, 0<z<c
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(Fig. 1) which is initially kept at temperature F(x,Y,z).
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Fig. 1. Simply supported rectangular plate.

The boundary value problem of heat conduction of a homogeneous isotropic solid is
given as,

2 2 2
ﬂ+ﬂ+ﬂ+g(x,y,z,t)=£ﬂ, 2.1)
subjected to the conditions
T =0 at all boundary surfaces, (2.2)
T=F(x,y,2)in 0<x<a0<y<b0<z<c fort=0, (2.3)

where T =T(X,y,z,t); a and k are thermal conductivity and thermal diffusivity of the
material of the plate.

Here we consider a simply supported rectangular plate with its dimension axb
subjected to thermal load. The fundamental equation and the associated boundary conditions
in the Cartesian coordinate system are given as,

2 _1

ViV w:(1 )DVZMT, (2.4)
-V
2 2 2
where V? = 62+ 82+ 82
oX® oy® oz
2 —
with  w=0, 6\/2v: ! M; on x=0,x=a, (2.5)
ox° (1-v)D
and
2 —
w=0, 6\/2v: L M; on y=0,y=D, (2.6)
oy° (@-v)D

where w is the deflection, M, is the thermally induced resultant moment and D is the
bending rigidity of the plate.

We consider the equilibrium state in the in-plate directions of x and y. Thus, the in-
plate resultant forces

N, =N, =N, =0 (2.7)

The resultant moments M,, M, M, per unit length of the plate are defined as,
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2 2
M —-p| 2 ‘Q’wa‘f’ 1w, (2.8)
OX oy 1-v
2 2
oy OX 1-v
and
o*w
M, = (1_V)D8x (2.10)
and the equilibrium equations of moments about x and y axes are
oM
oM, +—>2-Q, =0, (2.11)
ox oy
oM, oM 0. -0 2.12)
oy  ox Vo '

where Q,, Q, are the shearing forces.

D is the bending rigidity of the plate and M- isthe thermally induced resultant moment of
the plate respectively, which are defined by

3
12(1-v*)
where E be the Young’s modulus and
C
M :aEJ'Tzdz. (2.14)
0

The thermal stress components in terms of the resultant forces and resultant moments are
given as [12]

O'XX:%NX+1CZ3ZMX+(1_1V)[%NT 102—32MT—05ETJ, (2.15)

O'W:%Ny+1C232My+(1_1V)(% : 1(;2—32MT—05ETJ, (2.16)

and

o, :%ny —102—32|v|xy, (2.17)

where the resultant force is

N, = ansz. (2.18)
b

The deflection with w=0 atx=a,y =b,
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the moments M, =M, =0 at x=a,y=b,

the shearing forces Q, =Q, =0 and

the thermal stresses o, =0, =0at x=a,y=b.

Equations (2.1) to (2.18) constitute the mathematical formulation of the problem.

3. Solution of the problem

Following Ozisik [3], we develop the integral transform and its inverse. On applying the
integral transforms and inverses to the equations (2.1) to (2.3), one obtains the expressions for
the temperature distribution, thermally induced resultant force and resultant moment as

[c o sl o}

T(X Y,z t) ZZZK m1 X Vn’y) (nplz)'e—a(ﬂ%w,fmg)t.

m=1 n=1 p=1

{'E(,Bmﬂ/n”]p)"'

7\—|Q

t
j Vil t') e Vi k gy J (3.1)

The kernels of the transform are

K(B,,X)= \Esin B.x,where g =% m=123........
a
2 . nz
K(v,,y)= o Sinvay, where v, =" =1,23......... (3.2)

K(np,z): \/gsin 1,2, Where M, = % p=L123.......

and the transcendental equations are

sing,a=0, sinv,a=0, sinp,a=0. (3.3)

Here,

F( m,vn,n)—j j J KB Ky K, 2JF Oy 200Xy 2 (3.4)

9By vay )= [ | [K(Bax Ky YK, 2)olx,y 2 t)ax, dy' dz (35)
x'=0y'=0 z'=0

Now we substitute (3.1) in (2.18), one obtains

L(—l) P +1J

K (B XK (v, y)- 6Tt

t

\‘If(ﬂm,vn,np)+% J. g(ﬂn,Vn’np’tl)ea(ﬁ§1+v§+’7§)t'dtlJ, (36)

t'=0

and
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(S

K (B XK (v, y)- 6O

Llf(ﬁm,vn,np)+% Jt' g( n’anp’t.)ea(ﬁn%wfmﬁ)t'dt,J.

t'=0
Using equations (3.3) in (2.4), (2.5), (2.6), one obtains the thermal deflection as,

] .

K (B, XK (v,,y)-e “Vrrnmt.

W(X,y _( aEc ZZZ

m=L n=1 p—177p(ﬂ +V, )

\‘If(ﬂm,\/n,ﬂp)-i-% ,t[ (ﬁn’vninp’ ) (ﬂm+vn+77p) dtJ

Using (3.8) and (3.7) in (2.8),(2.9)and (2.10), one obtains the resultant moment as,

Mx:‘“EC\/giiZL(_l)p+lJ( Vv jK(ﬂm,X)K(VWY) o R

o0
m=1 n=1 p=1 e ﬁ +V

{If(ﬂm,vn,np)+% j- g(ﬁn,Vn,np,t.)ea(ﬂéwﬁwﬁ)t-dt.J.

t'=0

) e | G\l IO et
My——aEc\/;ZZZ [ﬂ;JrVﬁ]K(ﬂm,x)K(vn,y)

F(ﬂm,vmnpn% j o n,Vnﬁp’t.)ea(ﬂrﬁwgms)t-dt,J_

p+l
EC\F\F ZZZ ) J( ﬁm n jcosﬂmx cosv, y-e —a(fE+vi+ni)t )

m=1 n=1 p=1 Mo ﬂ +V,

{F(Igm,vm,]) J. ( n’Vn7,7p’t) (ﬂm+v+77p) dtJ

7\—|Q
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(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

Using equations (2.7), (3.1), (3.6), (3.7), (3.9), (3.10), (3.11) in (2.15) (2.16) and (2.17), one

obtains expressions for the thermal stresses as,

=1 n=1 p=1 ﬂp(ﬂ +V

Gxx_{lZzL ZZZ{ (-1)"y Z)JK(ﬂm,X)K(Vn'y) a(ﬁﬁwzmg)tJ

1 (-1 +1 (vt
s RS ke

=1 n=1 p=1 ny
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12 2 -1)P o
+C2(1_Zv)£aE ZZZ{( ) J XK (v, Y)-€ v )J

C m=1 n=1 p=1

m=1 n=1 p=1

ShSh ¢ a(ﬁm+vn+’7p)t
(1 v)LaEZZZK XK (v, y)K (77,”) ]}

t'=0

F(ﬂm,vn,nm% j G(ﬂn,vn,np,t')ea(ﬂ“z*”g“’s)t'dt'J, (3.12)

C w2 v (O

C =1 n=1 p=1 Up(ﬂ +v?

C m=1 n=1 p=l np

1 2 &S| (D) +1 AT
+C(1_V)LaE —ZZZ{—JK(ﬂm,X)K(Vn,y) J

12 2 e 1 Pt —-a 2+v2+172t
+c2(1_zv)[ aE ZZZV ) J B XK (v, y) & ")J

C a1 p=1

- v)LaEiiiK v y)K(n,2)€ a(ﬁfnwzmg)tJ}

m=1 n=1 p=l

{F(ﬂm,vmp

) p+1
ﬂ —a(BR+vEi+n?)t
T |cos B X.cosv,y-e "
—122 [I[ZZ;{ ﬂ +v? )‘

L (/32+ 2, Z)t'
J‘ ﬂmvn’np’ m+Vn 7 dt|:|

7\—|Q

t 2 2 2\
I G(Bvar1pt') (ﬁm””””)tdt'J, (3.13)

(3.14)

O-xy

|:F(ﬂm’vn’77p)

7\-|Q

4. Special cases
A) We consider an instantaneous point heat source of strength g, situated at a point

(X,,Y,.2,) inside the solid releases its heat spontaneously at time t = 7

9(x, ¥,2) =9, 8(x =%, )5(y — ¥, J5(z — 2, )6t — 7). (3.15a)
Substituting (3.15a) in (3.1), (3.8), (3.12), (3.13) and (3.14), one obtains

o0 00 00

TOy,2) = 35 3K (Ao XK (v, YK (1,.2) & 5

m=1 n=1 p=1

2.2, .2

LF(ﬂm,va E"K(ﬂ DK (VYo )K (1,2, )€ (”m*“”p)J, (3.16a)
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aEC

L 1) MJ a(frvinpt
(1- ZZZ K (B, XK (v,,Y)K(1,.2)-€

W(X!y!t)_ opapa (IB +V)

{'E(ﬂm,vn,ﬂp)JraE" K (B %) K (Vo Yo ) K (17,12, )€ (o J (3.17a)

=1 n=1 p=1 p(ﬂ +v2

7" {102{ Zii“ D, )Jx(ﬂm,x)x(vn,y) ‘“"ff““*”%”J

1 2 &S| (D) +1 AT
+C(1_V)LaE —ZZZ{—JK(ﬂm,X)K(Vn,y) J

C m=1 n=1 p=l np

12 2 1)PH .
+c2(1_zv)[ ok _ZZZV J L XK (v, y)-e Ve p)]

C m=1 n=1 p=1

m=1 n=1 p=1

(- v)LaEiiiK K(v, y)K (’7py2)- a(ﬁrz"”ﬁﬂﬁ)tJ}

F(ﬂm,vmp)ﬂ% K (B %) K (v Yo ) K (1,2, &5 078 J (3.18a)

o, = {122[ Zii{ (-1)*1 32 )J (B XK (v, y)-e a(ﬂ;wan;)tJ

=1 n=1 p=1 np(ﬂ +V

1 2 &S| (D) +1 g
+C(1_V)LaE ‘ZZZV—WK(ﬂm,X)K(vn,y)-e (Bavi p)]

Cmana pa m,
oz 255y (D™ AL
+ aE - K m’X K any m p
cz(l_v)L \)CZZ{ g [P ()2

m=1 n=1 p=1

- (lj-V) LaEiii K (ﬂm ) X)K (Vn’ y) K (np’ Z) : e—a(ﬁﬁwﬁmg)t J}

Llf(ﬂm,vn,np) +aTg° K(ﬂm, XO) K(vn, yo) K(Up, Zo)e (B2r2en)e J , (3.19)

( 1)P+1ﬂm n —a(Bh+vitnd)t
_122 \F\F\F;;;Lp ﬂ T )Jcos,b’ X.CoSv,y-e

. (3.20a)

B) We consider the Heat source is a plane-surface heat source of strength gs(t). We
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relate this surface heat source to the volume heat source g(x, Y, z,t) by using the Dirac delta
function as

9(%,y,2) =9, (t)5(x =%, )5(y -y, )s(z - 2,), (3.15b)

where 5(x —b)=0everywhere x #b.
Substituting equation (3.15b) in (3.1), (3.8), (3.12), (3.13) and (3.14), one obtains,

o0 o0 00

T 20 =D > S K (B XK (v, Y) K (17,,2) € R

m=1 n=1 p=1

t

F(ﬂm,vn,np)+%[K(ﬂm,XO)K(vn,yo)K(np,Zo) | gs(t)e”‘(”%”"z“’;)“dt'JJ, (3.16b)

t'=0

wEc eee |- 1)p+1J

PO Ve

D C it =t p—lnp(ﬂ +V)

W(X, yt)_( K (B XK (v, y)K (ﬂp, ) a it

F(ﬂm,vn,npn%(K(ﬂm,xO)K(vn,yO)K(np,zo) [ gs(t)ea(ﬂéw”zmg)t'dt'JJ, (3.17h)

Oy = {1ZZ£ Zii{n( 1)p+ )JK(ﬂm’X)K (Vn,y)_ea(ﬂriwﬁm;)tJ

=1 n=1 p=1 p(ﬁ +V

=1 n=1 p=1 My

122 2 & ()P o Pt
ot aE\/: K (B, XK (v, y)-e Ve
C2(1—V)£ lenzl“pzi 7, (B X (v y) e

) (1—l v) (“EiZZ K (B XK (v V) K (7, z)-e-aw%wﬁms)tJ}

1 2| (D41 a(BnR et
+c(1—v)L szz{ J X Cy)-e ]

\‘ﬁ(ﬂmivn’np) +%[K( m? Xo)K (Vn1 yo) K (np' Zo) J. gs (tﬁa(ﬁéwsﬂ]s)t'dt IJJ , (318b)

o 0

o, = {122[ ZZZ[ ()P )JK(ﬂm;X)K(Vn’y) —a(ﬂ%+v2+q§)tJ

c m=1 n-l p- ﬂp(ﬂ +v?

1 23 S (=D 41 e 2,12 02yt
+c(1—v)LaE _ZZZV)—JrJK(ﬂm’X)K(Vn,y) s D)J

C m=1 n=1 p=l np

2,2, .2

127 23S ()P oAt
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[aEiiz K m’ Vn’ y) (77p! z)-e“(ﬁﬁwnzmg)tJ}

m=1 n=1 p=1

F(ﬂm,vn,npﬂ%[K(ﬂm,XO)K(vn,yo)K(np,Zo) | g, (e gt JJ (3.19b)

t'=0

p+1 L
ZZZ D™ fuy CoS 3., X.Cosv, y.e = (B +va+ip)t
12 “Va \/ \/ 222 (5407

[F(ﬂm,vn,n )+“g° K (B K (v, ¥, K 7, 2, eV }

(3.20Db)
5. Numerical calculations
Dimension
Length of rectangular plate a=bom;
Breadth of rectangular plate b=4m;
Height of rectangular plate c=2m.

Material properties
The numerical calculation has been carried out for a copper (pure) thin hollow disk with the
material properties:

Thermal diffusivity o =112.34x10° m’s™

Thermal conductivity k =386 Wm™K™;

Density p=8954 kgm™

Specific heat ¢, =383 Jkg™K™;

Poisson ratio v =0.35;

Coefficient of linear thermal expansion, a, =16.5x107° K™;
Lamé constant u = 26.67 .

Roots of the transcendental equation
The f3, v, 17, are m", n", p" roots of transcendental equations

: _ ) . msz Nz pz
sin(3,a) =0, sin(v,b) =0, sin(;7,¢) =0 i.e. Am = " T e
The numerical calculation has been carried out with the help of computational mathematical
software Mathcad-2000 and the graphs are plotted with the help of Excel (MS office-2000).
For convenience setting

8Ty 5_ 8aEcZTo

A=20 = °*=0
7 7z*(1-v)D’ 74@-v) 4

In order to examine the influence of constant heat supply on the extreme ends of plate one
performed numerical calculations in X and Y direction. Considering

hm Sy = lim vy = lim n, =00,
N—0o0 M—0 m-—o0
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lim (e—"ﬁmz't) — lim (e—k‘/f't)z lim (e—k”v 't) _0-

m-—>co n—oo p—o0

Also the term cosine and sine are bounded.

Thus necessary condition for convergence is satisfied, by applying D-Alemberts ratio test it
can be easily verify that all the series in (3.1), (3.4), (3.8) to (3.10) are convergent. Also the
term in the expression for temperature, deflection and thermal stresses are negligible for large
value of m, n and p and it converges to zero at infinity. Therefore for better accuracy

numerical calculations have been performed by taking m=n= p =100 with the help of

computer programme.

From Fig. 2 it can be observed that, temperature and deflection start to increase from
initial edge, they increase till the middle and again decrease towards the extreme edge in X
direction.

P R NN

QO U ol un
TS
/

Temperature and
Deflection

'I_‘
[E
w
2]

T W
Fig. 2. Temperature distributionx (1) and deflection E (2) along X axis.

From Fig. 3 it can be seen that, shear stresses develop tensile stresses whereas resultant
stresses develop tensile stresses within 0<X<2.5 and compressive stresses within
2.5< X <5 in X direction.

80

40 ”Q 5 \
R S N
. &) Z= \

-40 -
-60 |

Thermal Stresses

o o) o)
Fig. 3. Thermal stresses along X axis: 1- —X% 2. ~ Y 3 "XV
C C D

From Fig. 4 it can be observed that, temperature and deflection increase from initial
edge, towards the extreme edge in Y direction.
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Fig. 4. Temperature distribution K (1) and deflection E (2) along Y axis.

From Fig. 5, it can be seen that, shear stresses develop tensile stresses whereas resultant
stresses are compressive stresses in Y direction.
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2 / -1\
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Oxx . Oyy 3. xy
' CcC ' D

Fig. 5. Thermal stresses along Y axis: 1-

6. Conclusion

In discussing the thermal bending problem of a simply supported rectangular plate with
thickness c, it will be assume that the deflection, which means a deformation in the out-of-
plane direction of the plate is small. In order to analyze the thermo-elastic behavior of a
simply supported rectangular plate we here introduce the concept of the resultant forces

N,, Ny, N, and the resultant moments M,, M,, M, per unit length of the plate by
considering the equilibrium state in the in-plane-direction of x and y . Furthermore, the
thermal stress components o,,, o,,, o,, due to thermal bending moments are evaluated in

which the in-plane resultant forces N,, N, N, are omitted. As a special case the arbitrary

initial heat supply T(x,y,z,t)=T, is considered and determined the expressions for the

temperature distribution, thermal deflection and the stress functions when each boundary of a
rectangular plate is of zero temperature.
From the figures, it can be observed that,

1) temperature and deflection take place at middle part of rectangular plate;

2) temperature and deflection are proportional to each other;

3) from Fig. 3 deflection occurs at extreme edge in Y direction;
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4) shear stresses develop tensile stresses in both X and Y direction;

5) resultant stress develops compressive stresses in both X and Y direction.

It means we may find out that due to initial constant heat supply the stresses and
deflection develops within rectangular plate. The both normal stress components and shear
stress component change sharply from initial edges to extreme edges of rectangular plate.
Also from the figures of deflection it can be observed that the deflection occur through middle
part of rectangular plate towards Y the direction.
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