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Abstract. The dynamic response of a heat conducting solid bar of polygonal cross section 
subjected to moving heat source is discussed using the Fourier expansion collocation method 
(FECM). The equations of motion are formulated using the three dimensional constitutive 
equation of elasticity and generalized thermo elastic equation composed of linear 
homogeneous isotropic material. Three displacement potential functions are introduced to 
uncouple the equations of motion and the heat conduction. The frequency equations are 
obtained by satisfying the boundary conditions along the surface of the polygonal solid bar 
using Fourier expansion collocation method. The numerical calculations are carried out for 
triangular, square, pentagonal and hexagonal cross sectional bars with different moving heat 
source speeds. Dispersion curves are plotted for longitudinal and flexural (antisymmetric) 
modes of non dimensional frequency. 
 
 
1. Introduction 

The study of dynamic response of heat conducting solid bar is significant in the ultrasonic 
inspection of materials, vibration of engineering structures, atomic physics, industrial 
engineering, thermal power plants, submarine structures, pressure vessel, aerospace, chemical 
pipes and metallurgical process. The theory of moving sources of heat has been instrumental 
in providing the welding engineer with a scientific criterion for the weld ability of steel and 
surface hardening of metallic alloys. The importance of thermal stresses in causing structural 
damages and changes in functioning of the structure is well recognized whenever thermal 
stress environments are involved. Therefore, the ability to predict thermodynamics stresses 
induced by moving heat sources in  structures with polygonal cross sections are essential for 
the proper and safe design and the knowledge of its response during the service in these 
severe thermal environments. The dispersion of displacement, temperature change and 
perturbed magnetic field in case of fundamental modes for the symmetric and antisymmetric 
cases of the cylindrical panel is playing a vital role in smart material applications. This type of 
model analysis is very important in bio sensing applications in nuclear magnetic resonance 
(NMR), magnetic resonance imaging (MRI) and echo planar imaging (EPI). 

Gazis [1] has studied the most general form of harmonic waves in hollow cylinder of 
circular cross section of infinite length. He presented in detail the frequency equation in Part I 
and numerical results in Part II. Mirsky [2] analyzed the wave propagation in transversely 
isotropic circular cylinders of infinite length and presented the frequency equation in Part I 
and numerical results in Part II. Nagaya [3-6] discussed wave propagation in an infinite bar of 
arbitrary cross section and the wave propagation in an infinite cylinder of both inner and outer 

Materials Physics and Mechanics 21 (2014) 177-193 Received: July 5, 2014

© 2014, Institute of Problems of Mechanical Engineering

mailto:selvam1729@gmail.com


 

arbitrary cross section applicable to a bar of general cross section, based on three-dimensional 
theory of elasticity. The boundary conditions along the free surface of arbitrary cross section 
are satisfied by means of Fourier expansion collocation method. Paul and Venkatesan [7] 
have studied the wave propagation in an infinite piezoelectric solid cylinder of arbitrary cross 
section using Fourier expansion collocation method.  

Ashida [8, 9] have presented the temperature and stress analysis of an elastic circular 
cylinder in contact with heated rigid stamps and thermally - induced wave propagation in a 
piezoelectric plate respectively. Tauchert et al. [10] discussed the developments in thermo 
piezoelectricity with relevance to smart composite structures. The equations governing linear 
response of piezoelectric media are outlined, and general solution procedure based on 
potential functions was described. Gao and Noda [11] have studied the thermal-induced 
interfacial cracking of magnetoelectroelastic materials under uniform heat flow. 
Chen et al. [12] analyzed the point temperature solution for a pennay-shapped crack in an 
infinite transversely isotropic thermo-piezo-elastic medium subjected to a concentrated 
thermal load applied arbitrarily at the crack surface using the generalized potential theory. 
Suhubi [13] studied the longitudinal vibration of a circular cylinder coupled with a thermal 
field. The frequency equation was obtained for two particular cases, namely for a constant 
temperature and for zero heat flux on the surface of the cylinder and solved the frequency 
equation for small radii and weak coupling. Later with Erbay [14], he studied the longitudinal 
wave propagation in a generalized thermoelastic infinite cylinder and obtained the dispersion 
relation for a constant surface temperature of the cylinder. Lord and Shulman [15] formulated 
a generalized dynamical theory of thermoelasticity using the heat transport equation that 
included the time needed for the acceleration of heat flow.  

Green and Lindsay [16] presented an alternative generalization of classical 
thermoelasticity. Restrictions on constitutive equations were discussed with the help of an 
entropy production inequality proposed by Green and Laws [17]. They have showed that the 
linear heat conduction tensor was symmetric and that the theory allows for second sound 
effects. Hallam and Ollerton [18] investigated the thermal stresses and deflections that 
occurred in a composite cylinder due to a uniform rise in temperature, experimentally and 
theoretically and compared the obtained results by a special application of the frozen stress 
technique of photoelasticity. Singh and Sharma [19] investigated the generalized 
thermoelastic waves in transversely isotropic media. The wave propagation of plane harmonic 
waves in anisotropic generalized thermoelasticity was developed by Sharma and Sidhu [20]. 
Sharma [21] discussed the three-dimensional vibration analysis of a homogeneous 
transversely isotropic thermoelastic cylindrical panel. 

Varma [22] presented the propagation of waves in layered anisotropic media in 
generalized thermo elasticity in a arbitrary layered plate. The dispersion relations of 
thermoelastic waves were obtained by invoking continuity at the interface and boundary 
conditions on the surfaces of layered plate. Savoia and Reddy [23] studied the three 
dimensional thermal analysis of laminated composite plates subjected to thermal and 
mechanical loads in the context of the three dimensional quasi-state theory of 
thermoelasticity. 

Selvamani [24] has obtained the frequency equation of the flexural wave motion of a 
heat conducting doubly connected thermo elastic plate of polygonal cross sections using 
Fourier expansion collocation method. The frequency equations are obtained for longitudinal 
and flexural vibrations and are studied numerically for different cross section sectional plates. 
Recently, Ponnusamy and Selvamani [25, 26] have studied respectively, the three dimensional 
wave propagation of a transversely isotropic magneto thermo elastic and generalized thermo 
elastic cylindrical panel in the context of the linear theory of thermo elasticity. 
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The problems involving a moving heat source plays vital role in thermal fields due to its 
extensive engineering applications, such as continuous annealing after cold working, pulsed-
laser cutting and welding, and high speed machining and grinding etc. Al-Huniti et al. [27] 
studied the dynamic responses of a copper rod due to a moving heat source under the wave 
type heat conduction model and by means of the Laplace transform the temperature was 
obtained directly from the heat conduction equation. Baksi et al. [28] considered a three-
dimensional problem for a homogeneous, orthotropic, electrically as well as thermally 
conducting infinite rotating elastic medium with heat source by the eigen value approach. 
Lykotrafitis and Georgiadis [29] studied the three-dimensional steady-state 
thermo_elastodynamic problem of moving sources over a half space. Hsieh [30] presented the 
exact solution of Stefan problems related to a moving line heat source in a quasi-stationary 
state. 

In this paper, the free vibration of a generalized thermoelastic solid cylinder of 
polygonal (triangular, square, pentagonal and hexagonal) cross section is studied using the 
Fourier expansion collocation method based on Sububi’s generalized theory [31]. The 
computed nondimensional wave numbers are plotted as graphs. 

 
2. Governing equations 

The generalized theories of thermoelasticity are the constitutive equations in which the 
functions are temperature rate dependent. The constitutive equations for a linear isotropic 
thermoelastic medium, the stresses ij , expressed in cylindrical coordinates, are 
 

   ,2rr rr zz rr te e e e T T          ,       (1a) 
 

   ,2rr zz te e e e T T            ,       (1b) 
 

   ,2zz rr zz zz te e e e T T          ,       (1c) 
 

2r r   , 2z z   , 2 .rz rz               (1d,e,f) 
 

where ije  are the strain components,   is the thermal stress coefficients, T is the temperature, 
  is of generalized thermo elasticity, t is the time,   and   are Lame’ constants. The strain 

ije  are related to the displacements are given by 
 

,rr re u ,  1
,e r u v 

  , ,zz ze w ,       (2a) 
 

 1
, ,r rv r v u     , 1

, ,z zv r w    , , ,rz r zw u   ,    (2b) 
 
in which u , v  and w  are the displacement components along radial, circumferential and axial 
directions respectively. The comma in the subscripts denotes the partial differentiation with 
respect to the variables.  
 
3. Equations of motion 

The three dimensional equations of motion and the heat conduction equation in the reference 
system ,r    and z  are 
 

 1 1
, , , ,rr r r rz z rr ttr r u             ,       (3a) 

 

1 1
, , , , ,2r r rzz z z r ttr r v               ,       (3b) 
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1 1
, , , ,rz r z zz z r ttr r w           ,        (3c) 

 

2 1
, , , 0 , , ,( ) ( )v tt t t r zc T T c T Q Q T u r u v w

t
       

          
, (3d) 

 

where   is the mass density, 
vc  is the specific heat capacity, /K c   is the diffusity, K is 

the thermal conductivity,   is the constant of generalized thermoelasticity, 0T  is the reference 
temperature. Substituting the Eqs. (1) and (2) in Eqs. (3), the following displacement 
equations of motion are obtained 
 

    1 2 2 1
, , , , ,2 rr r zz ru r u r u r u u r v                 

 

     2
, , , , ,3 rz r rt ttr v w T T u             , (4a) 

 

     1 2 2 2
, , , , ,2 3rr r zzv r v r v r v v r u                 

 

     1 1
, , , , ,r z t ttr u r w T T v                 , (4b) 

 

     1 2
, , , , ,2 zz rr r rzw w r w r w u            

 

     
,

1 1
, , , ,z z z zt ttr v r u T T w


              , (4c) 

 

 1 2
, , , , , , ,( )v rr r zz tt t tc T r T r T T T c T Q Q              

 

1
0 , , , ,( )tr t t tzT u r u v w       . (4d) 

 
The heat conducting elastic rod is subjected to a moving heat source of constant strength 
releasing its energy continuously while moving along the positive direction of the z-axis with 
a constant velocity . This moving heat source is assumed to be the following non-
dimensional form 
 

 0Q Q z t   , (5) 
 

where 0Q  is a constant and is the delta function.  
 
4. General solution technique 

The Equations (4) are the coupled partial differential equations of the three displacements and 
heat conduction components. To uncouple the Eqs. (4), we follow Fourier series solutions 
discussed by Mirsky [2] as follows:  
 

   1 1 ( )
, ,, ,

0
( , , , ) i kz t

n r nn n r n

n

u r z t r r e 

     


  



    
  , (6a) 

 

   1 1 ( )
, ,, ,

0
( , , , ) i kz t

n n rn n n r

n

v r z t r r e 

     


  



    
  , (6b) 

 

  ( )

0
( , , , ) i kz t

nn n

n

w r z t i a W W e  






    , (6c) 
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      2

0
, , , 2 i kz t

nn

n

T r z t a T T e


   






     ,  (6d) 

 

where 1
2n   for 0n  , 1n   for 1n  , 1i   , k  is the wave number,   is the 

frequency,  ,n r  ,  ,nW r  ,  ,nT r  ,  ,n r  ,  ,
n

r  ,  ,nW r  ,  ,nT r  ,  ,
n

r   
are the displacement potentials  and a  is the geometrical parameter of the cylinder. 

Introducing the irrotational velocity  2
1 2c      and dimensionless quantities such 

as ,ka   azz  , aT t a  , arx  , 1c a   , 2 2 2 2
1a c  , 20

1 2
1v

T a

c c
 

 
 , 

0

1

Q
Q

i





 


, 
2
1

2
c

c
 


 , 1

3
c

a
  , and  4 1 2   , and using Eqs. (5) and (6) in Eqs. (4), 

we obtain 
 

     2 2
4 4 31 1 0n n nW i T               , (7a) 

 

     2 2 2 2
4 4 31 1 0n n nW i T                 , (7b) 

 

 2 2
1 1 2 0n n ni i W i Q T                , (7c) 

 

  2 2 22 0n        , (7d) 
 

where 2 2 2 1 2 2 2 .x x x x             
The parameters defined in Eqs. (7), namely, 1  couples the equations corresponding to 

the elastic wave propagation and the heat conduction which is called the coupling factor; the 
coefficient 2 , which is introduced by the theory of generalized thermoelasticity, may render 
the governing system of equations hyperbolic. The parameter 3  is the coefficient of the term 
indicating the difference between empirical and thermodynamic temperatures.  

Rewriting Eqs. (7) results in the following vanishing determinant form    
 

     

     

 

2 2 2
4 4 3

2 2 2
4 4 3

2
1 1 2

1 1

1 1

i

i

i i i Q

    

     

    

      

      

      

 , , 0n n nW T  . (8) 

 
Equation (8), on simplification reduces to the following differential equation  
 

  6 4 2 , , 0n n nA B C D W T       , (9) 
 

where 
 

4A  ,  (10a) 
 

     
22 2 2 2 2 2

4 4 2 4 1B i                   , (10b) 
 

    2 2
3 4 41 1C i i              
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    2 2 2 2
4 4 2 i              

 

      2 2 2 2
2 4 1i            , (10c) 

 

        2 2 2 2 2 2
3 4 41 1D i i                     

   2 2 2 2
2 4i           . (10d) 

 

Solving the Eq. (9), the solutions for the symmetric mode are obtained as 
 

 
3

1
cosn jn n j

j

A J ax n  


 , (11a) 

 

 
3

1
cosn j jn n j

j

W d A J ax n 


 ,  (11b) 

 

 
3

1
cosn j jn n j

j

T e A J ax n 


 . (11c) 

 
Similarly, the solutions for the antisymmetric mode are obtained by changing cosn  by 
sin n  in Eqs. (11) and are given as 
 

 
3

1
sinjn n jn

j

A J ax n  


 , (12a) 

 

 
3

1
injnn j n j

j

W d A J ax s n 


 , (12b) 

 

 
3

1
sinn jnj n j

j

T e A J ax n 


 , (12c) 

 

where  
2

0ja  ,  1,2,3j  are the roots of the following algebraic equation  
 

     
6 4 2 0A a B a C a D        (13) 

 

and the constants jd  and je  are given in Eqs. (12b) and (12c) can be calculated from the 
equations  
 

       
22 2

4 3 41 1j j jd i e a              , (14a) 
 

          
2 22 2

4 3 41 1j j j ja d i e a                . (14b) 
 
Solving the Eq. (7d), the solution to the symmetric mode is obtained as  
 

 4 4 sinn n nA J ax n   , (15) 
 
and for the antisymmetric mode is 
 

 4 4 cosn nn
A J ax n   , (16) 
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where  
2 2 2

4a   . If 2( ) 0ja  ,  1,2,3j , then the Bessel function nJ  is to be 
replaced by the modified Bessel function nI . 

In this problem, the free vibration of a generalized thermoelastic solid bar of polygonal 
cross section is considered. Since the boundary is irregular, the Fourier expansion collocation 
method is applied on the boundary of the cross section. Thus, the boundary conditions 
obtained are 

 

        0.pp pq zp ll l l
T       (17) 

 

where p  is the coordinate normal to the boundary and q  is the coordinate in the tangential 
direction. Here pp  is the normal stress, pq and zp  are the shearing stresses and  l  is the 
value at the thl   segment of the boundary. Since the coordinate p  and q  are functions of r  
and  , it is difficult to find transformed expressions for the stresses. Therefore the curved 
boundary is divided into small segments such that the variations of the stresses are assumed to 
be constant. Assuming the angle l , between the normal to the segment and the reference axis 
to be constant, the transformed expressions for the stresses are followed by Nagaya [3-6] 
 

 2 1 2 12 , cos ( ) ( , )sin ( ) 0.5 [ , ] , sin 2( )pp r l l r lu r u v r u u v                  
 

 
 

 1, ( , ) ,r zu r u v w     , (18a) 
 

1 1( , ( , ))sin 2( ) ( ( , ) , )cos2( )pq r l r lu r v u r u v v                 , (18b) 
 

1( , , )cos( ) ( , , )sin( )zq z r l z lu w v r w              . (18c) 
 

Applying the Fourier expansion collocation method along the curved surface of the 
boundary, the transformed expressions for the stresses are  
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where, 
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The functions 
jj
nne k  used in the boundary conditions of the symmetric and antisymmetric 

cases are given in Appendix A. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Geometry of a straight line segment. 
 

The boundary conditions along the entire range of the boundary cannot be satisfied 
directly. To satisfy the boundary conditions, the Fourier expansion collocation method due to 
Nagaya [3-6] is applied along the boundary. Performing the Fourier series expansion to the 
transformed expression in Eq. (14) along the boundary, the boundary conditions are expanded 
in the form of double Fourier series for symmetric and antisymmetric modes of vibrations. 
For the symmetric mode, the equation, which satisfies the boundary conditions, is obtained in 
matrix form as follows: 
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where, 
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Here 1,2,3,4j   and 5, L  is the number of segments, lR  is the coordinate r  at the 
boundary and N  is the number of terms in the Fourier series.  
The boundary conditions for the antisymmetric mode are written in the form of a matrix as 
given below: 
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5. Numerical results and discussion 

In accordance with the theoretical results obtained in the previous sections and comparing 
these results with the literature results, some numerical analysis of the dispersion equation is 
carried out for triangular, square, pentagonal and hexagonal cross sectional bars. The secant 
method given by Antia (2002) is used to obtain the roots of the frequency equation. The 
material properties of copper at temperature 4.2 K  are taken approximately as Poisson ratio 

0.3  , the Young’s modulus 11 2E 2.139 10 N / m  , 11 28.20 10 kg / ms   , 
10 24.20 10 kg / ms   , 2 2 29.1 10 m / ksvc   , 2 2113 10 kgm / ksK   , 3 38.96 10 kg / m    
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and 0 10Q  . The other parameters such as ' , 1 , 2 , and 3  are chosen by following the 
arguments given by Erbay and Suhubi [14].   

The geometric relations for the polygonal cross-sections given as 
 

 
1

cosi iR b  


    ,         (27) 
 
where b  is the apothem. The relation given in Eq. (23) is used directly for the numerical 
calculation. The dimensionless wave numbers, which are complex in nature, are computed by 
fixing   for 0 1  using secant method (applicable for complex roots [20]). The basic 
independent modes like longitudinal and flexural vibrations of bar are analyzed and the 
corresponding non-dimensional wave numbers are computed. The polygonal cross-sectional 
bar in the range 0   and    is divided into many segments for convergence of wave 
number in such a way that the distance between any two segments is negligible. The 
computation of Fourier coefficients given in Eq. (21) is carried out using the five-point 
Gaussian quadrature method. To obtain the roots of the frequency equation the secant method 
applicable for the complex roots is employed. The results of longitudinal and flexural 
(antisymmetric) modes are plotted in the form of dispersion curves. The notations used in the 
figures namely, LM denotes the longitudinal mode and FASM denotes the flexural 
antisymmetric modes of vibrations, 1 refer to the first mode and 2 refer the second mode in all 
the dispersion curves.    

In Tables 1-2, a comparison is made between the real R    and imaginary I    parts 
of frequency for longitudinal modes of the polygonal cross-sectional bar with different 
moving heat source velocities 1v  , 2v   and 3v  . From these tables it is clear that as the 
vibration modes increases, the non dimensional frequencies are also increases in all the four 
cross sectional bars and also it is clear that the non dimensional frequency profiles exhibits 
low energy for increasing heat source velocity.  
 
Table 1. Comparison between the real R    and imaginary I    parts of frequency for 
longitudinal modes of the Triangular and Pentagonal cross-sectional bar with moving heat 
source velocities 1v  , 2v   and 3v  .  

Mode 

Triangle Pentagon 

1v   2v   3v   1v   2v   3v   

R    I    R    I    R    I    R    I    R    I    R    I    

1 0.0851 0.0844 0.0884 0.0879 0.0817 0.0813 0.0876 0.0849 0.0896 0.0880 0.0826 0.0830 

2 0.2627 0.2603 0.2611 0.2634 0.2470 0.2497 0.2744 0.2707 0.2782 0.2671 0.2484 0.2533 

3 0.4615 0.4508 0.4502 0.4449 0.4231 0.4249 0.4624 0.4510 0.4668 0.4549 0.4217 0.4287 

4 0.6562 0.6366 0.6553 0.6406 0.6089 0.5983 0.6505 0.6246 0.6560 0.6391 0.6030 0.5997 

5 0.9548 0.9179 0.9508 0.9221 0.8974 0.8636 0.9606 0.9096 0.9477 0.9090 0.8832 0.8509 

 
Another spectrum of the non-dimensional frequencies of flexural (antisymmetric) 

modes of four cross sectional bars is discussed in Tables 3-4. From Tables 3-4, it is observed 
that as the modes are  increases the non-dimensional frequency also increases, whereas the 
dispersion of flexural modes are almost exponentially decreasing with increasing values  of 
heat source velocity. The amplitude of the all modes of vibrations possess high energy in 
flexural (antisymmetric) compared with longitudinal modes due to the temperature changes 
are more pertinent in flexural (antisymmetric) modes.  
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Table 2. Comparison between the real R    and imaginary I    parts of frequency for 
longitudinal modes of the Square and Hexagonal cross-sectional bar with moving heat source 
velocities 1v  , 2v   and 3v  . 

Mode 

Square Hexagon 

1v   2v   3v   1v   2v   3v   

R    I    R    I    R    I    R    I    R    I    R    I    

1 0.0914 0.0914 0.0904 0.0903 0.0842 0.0880 0.0942 0.0825 0.1002 0.0998 0.0957 0.1030 

2 0.2717 0.2705 0.2732 0.2697 0.2619 0.2621 0.2766 0.2811 0.2984 0.3017 0.3717 0.2856 

3 0.4594 0.4551 0.4611 0.4491 0.4397 0.4351 0.4622 0.4545 0.4993 0.5002 0.5014 0.5016 

4 0.6466 0.6349 0.6526 0.6308 0.6209 0.6093 0.6530 0.6361 0.7081 0.7010 0.7084 0.7223 

5 0.9564 0.9315 0.9429 0.8937 0.8971 0.8758 0.9168 0.8881 1.0098 0.9804 1.0076 0.9713 

 
Table 3. Comparison between the real R    and imaginary I    parts of frequency for 
flexural antisymmetric modes of the Triangle and Pentagonal cross-sectional bar with moving 
heat source velocities 1v  , 2v   and 3v  .  

Mode 

Triangle Pentagon 

1v   2v   3v   1v   2v   3v   

R    I    R    I    R    I    R    I    R    I    R    I    

1 0.0974 0.0870 0.0892 0.0889 0.0748 0.0753 0.0891 0.0889 0.0891 0.0889 0.0625 0.0646 

2 0.2665 0.1596 0.2726 0.2677 0.2242 0.2353 0.2690 0.2655 0.2651 0.2591 0.1820 0.2254 

3 0.4529 0.4357 0.4592 0.4488 0.4916 0.4023 0.4545 0.4401 0.4527 0.4296 0.3467 0.4148 

4 0.7434 0.6147 0.6486 0.6316 0.5722 0.5590 0.6477 0.6170 0.6512 0.6220 0.5294 0.5783 

5 0.9430 0.9012 0.9995 0.9409 0.8600 0.7878 0.9432 0.8914 0.9466 0.9003 0.7998 0.8057 

 
Table 4. Comparison between the real R    and imaginary I    parts of frequency for 
flexural antisymmetric modes of the Square and Hexagonal cross-sectional bar moving heat 
source velocities 1v  , 2v   and 3v  . 

Mode 

Square Hexagon 

1v   2v   3v   1v   2v   3v   

R    I    R    I    R    I    R    I    R    I    R    I    

1 0.1001 0.1001 0.0561 0.0345 0.0999 0.0999 0.1000 0.1000 0.0976 0.0973 0.0999 0.1001 

2 0.3000 0.3000 0.3005 0.3004 0.3002 0.3002 0.3000 0.3000 0.5000 0.5000 0.3002 0.3006 

3 0.5004 0.5004 0.5003 0.5002 0.5005 0.5005 0.4785 0.4785 0.6200 0.6032 0.5004 0.5005 

4 0.7007 0.7007 0.7008 0.6993 0.7059 0.7004 0.7007 0.7007 0.9870 0.8765 0.7007 0.7007 

5 1.0019 1.0008 1.0010 1.0010 0.9999 1.0004 1.0000 1.0000 1.0010 1.0010 1.0201 0.9795 

 
Comparing the results of uniform cross sectional bars subjected to moving heat source, 

it is noticed that as the different vibrational modes increases, the real part of the 
nondimensional frequency R    obtained for the polygonal cross sectional bar increases 

whereas the imaginary part I    decreases, which is the proper physical behavior that the 
dissipation of energy due to moving heat sources.   
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5.1. Triangular and pentagonal cross-sections. In the triangular and pentagonal cross-
sectional cross sectional bar, the vibrational displacements are symmetrical about the x axis 
for the longitudinal mode and antisymmetrical about the y axis for the flexural mode since the 
cross-section is symmetric about only one axis. Therefore n and m are chosen as 0, 1, 2, 3… 
in Eq. (23) for the longitudinal mode and n, m=1, 2, 3 … in Eq. (25) for the flexural mode and 
the dimensionless frequency   are calculated by fixing complex wave number  . The 
variation of non-dimensional frequency with dimensionless wave number of a triangular cross 
sectional bar are shown in Fig. 2 and Fig. 3 with respect to the heat source distance 1z  , 

2z   and constant heat source velocity . From the Fig. 2, it is observed that, the propagation 
of energy is linear for the longitudinal and flexural (anti symmetric) modes of the bar.  

The wave propagation of bar with increasing heat source distance in Fig. 3, the behavior 
is though linear, becomes saturated quickly for the longitudinal mode beyond 0.2   and for 

the flexural (antisymmetric) mode beyond 0.4  .  
 

 
 

Fig. 2. Non-dimensional frequency versus dimensionless wave number of a triangular cross 
sectional bar for 1z   with ' 7

1 2 32.0, 2.6 10 , 1.0        . 
 

 
 

Fig. 3. Non dimensional frequency versus dimensionless wave number of a triangular cross 
sectional bar for 2z   with ' 7

1 2 32.0, 2.6 10 , 1.0        . 
 
In Figures 4 and 5, the variation of non-dimensional frequency with dimensionless wave 
number of a pentagonal cross sectional bar is discussed with respect to the heat source 
distance 1z   and 2z  . Here, it is observed that, the dispersion is slightly high in both 
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modes of bar with respect to the heat source distance 1z   and 2z   than in the case of 
triangular cross sectional bar. The frequencies increase for higher modes of vibrations, and the 
cross over points in the trend line indicates the transfer of heat energy between the modes of 
vibrations. 
 

 
 

Fig. 4. Non dimensional frequency versus dimensionless wave number of a pentagonal bar for 
1z   with ' 7

1 2 32.0, 2.6 10 , 1.0        . 
 

 
 

Fig. 5. Non dimensional frequency versus dimensionless wave number of a pentagonal bar for 
2z   with ' 7

1 2 32.0, 2.6 10 , 1.0        . 
 

5.2. Square and Hexagonal cross-sections. In case of longitudinal vibration of square 
and hexagonal cross-sectional bars, the displacements are symmetrical about both major and 
minor axes, since both the cross-sections are symmetric about both the axes. Therefore the 
frequency equation is obtained by choosing both terms of n and m as 0, 2, 4, 6… in Eq. (23). 
During flexural motion, the displacements are antisymmetrical about the major axis and 
symmetrical about the minor axis. Hence the frequency equation is obtained by choosing n, 
m=1, 3, 5 in Eq. (25).   

A graph is drawn between the non-dimensional frequency  versus dimensionless wave 
number   of transversely isotropic square cross sectional bar for longitudinal and flexural 
(antisymmetric) modes of vibrations with the heat source distance 1z   and 2z   which is 
shown in Figs. 6 and 7. From Figures 6 and 7, it is clear that, the displacement of energy in 
the first mode and second mode of vibrations of longitudinal and flexural (antisymmetric) 
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increases linearly as the wave number increases. It is also observed that at | | 0.2  , the 
longitudinal and flexural (antisymmetric) modes of vibration merges, beyond | | 0.3  , the 
flexural and anti symmetric modes of vibrations are getting dispersed.  

Figures 8 and 9 show that the non-dimensional frequency   versus dimensionless 
wave number | |  of transversely isotropic hexagonal cross sectional bar for longitudinal and 
flexural (antisymmetric) modes of vibrations with the heat source distance 1z   and 2z  . It 
is observed that as the wave number increases, the non-dimensional frequency also increases 
linearly but, beyond | | 0.2  , the first two modes of longitudinal and flexural 
(antisymmetric) have oscillating behavior. The transfer of heat energy is higher in the lower 
modes of vibrations as compared to the higher modes. This cross over point represents the 
transfer of heat energy between modes of vibration of square and hexagon. 
 

 
 

Fig. 6. Non dimensional frequency versus dimensionless wave number of a square bar for 
1z   with ' 7

1 2 32.0, 2.6 10 , 1.0        . 
 

 
 

Fig. 7. Non dimensional frequency versus dimensionless wave number of a square bar for 
2z   with ' 7

1 2 32.0, 2.6 10 , 1.0        . 
 
We have shown that the frequencies depend strongly on the cross-sections of the bar and 
deviate from the circular one. The dispersion curves of higher wave numbers are sensitive to 
the nature of the thermal boundary condition as well as to the measure of the thermo-
mechanical cross-coupling for both propagating and evanescent waves. These dispersions 
curves obtained from the exact solution of the problem could be used as references data for 
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developing of reliable finite elements and boundary elements for approximate solution of the 
problems of wave propagation in structures with moving heat sources. 
 

 
 

Fig. 8. Non dimensional frequency versus dimensionless wave number of a hexagonal 
bar for 1z   with ' 7

1 2 32.0, 2.6 10 , 1.0        . 
 

 
 

Fig. 9. Non dimensional frequency versus dimensionless wave number of a hexagonal bar for 
2z   with ' 7

1 2 32.0, 2.6 10 , 1.0        . 
 
6. Conclusions 

In this paper, the dynamic response of a heat conducting solid bar of polygonal cross section 
subjected to moving heat source is analyzed by satisfying the boundary conditions on the 
irregular boundary using the Fourier expansion collocation method and the frequency 
equation for the longitudinal and flexural vibrations are obtained. Numerically the frequency 
equations are analyzed for the bar of different cross-section such as triangular, square, 
pentagonal and hexagonal. From the results of the present method, it is clear that moving heat 
source and the different geometrical cross sections of the bar influence the frequency. The 
problem can be analyzed for any other cross section by using the proper geometric relation. 
 
Appendix A 

The expressions 
jj
nne k  used in Eqs. (19) and (21) are given as follows: 

 

 4 12 ( 1) ( ) ( ) ( ) cos2( )cosj

n n j j n j le n n J ax ax J ax n           
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   2 2 2
4 4( ) 2cos ( ) cosj l j n jx a d J ax n                 

 

 4 12 ( 1) ( ) ( ) ( ) sin sin 2( ), 1,2,3n j j n j ln n J ax ax J ax n j            (A.1) 
 

 4
4 4 4 1 42 ( 1) ( ) ( ) ( ) cos cos2( )n n n le n n J ax ax J ax n           

 

 2
4 4 4 4 1 42 [ ( 1) ( ) ] ( ) ( ) ( ) sin sin 2( )n n ln n ax J ax ax J ax n            , (A.2) 

 

 2
12 [ ( 1) ( ) ] ( ) ( ) ( ) cos sin 2( )j

n j n j j n j lf n n ax J ax ax J ax n            
 

 12 ( ) ( ) ( 1) ( ) sin cos2( ), 1,2,3j n j n j ln ax J ax n J ax n j           (A.3) 
 

 4
4 4 4 1 42 ( 1) ( ) ( ) ( ) cos sin 2( )n n n lf n n J ax ax J ax n           

 

 2
4 4 1 4 4 42( ) ( ) [( ) 2 ( 1)] ( ) sin cos2( )n n lax J ax ax n n J ax n            , (A.4) 

 

 1( ) ( )cos( 1 ) ( ) ( )cos( )cos , 1,2,3j

n j n j l j n j lg d nJ ax n ax J ax n j                        (A.5) 
 

 4
4 4 1 4( )cos( 1 ) ( ) ( )sin sin( )n n l n lg nJ ax n ax J ax n              (A.6) 

 

        1cos 1 cos( )cos , 1,2,3j

n j l n j j n j lk e n n J ax ax J ax n j                     (A.7) 
 

 4 12 ( 1) ( ) ( ) ( ) cos2( )sin
j

n n j j n j le n n J ax ax J ax n           
 

   2 2 2
4 4( ) 2cos ( ) cosj l j n jx a d J ax n                 

 

 4 12 ( 1) ( ) ( ) ( ) cos sin 2( ), 1,2,3n j j n j ln n J ax ax J ax n j                   (A.8) 
 

 
4

4 4 4 1 42 ( 1) ( ) ( ) ( ) sin cos2( )n n n le n n J ax ax J ax n           
 

 2
4 4 4 4 1 42 [ ( 1) ( ) ] ( ) ( ) ( ) cos sin 2( )n n ln n ax J ax ax J ax n            ,           (A.9) 

 

 2
12 [ ( 1) ( ) ] ( ) ( ) ( ) sin sin 2( )

j

j n j j n j lnf n n ax J ax ax J ax n            
 

 12 ( ) ( ) ( 1) ( ) cos cos2( ), 1,2,3j n j n j ln ax J ax n J ax n j                   (A.10) 
 

 
4

4 4 4 1 42 ( 1) ( ) ( ) ( ) sin sin 2( )n n lnf n n J ax ax J ax n           
 

 2
4 4 1 4 4 42( ) ( ) [( ) 2 ( 1)] ( ) cos cos2( )n n lax J ax ax n n J ax n            ,         (A.11) 

 

 1( ) ( )cos( 1 ) ( ) ( )cos( )sin , 1,2,3
j

j n j l j n j ln
g d nJ ax n ax J ax n j                      (A.12) 

 

 
4

4 4 1 4( )cos( 1 ) ( ) ( )cos sin( )n l n ln
g nJ ax n ax J ax n              , (A.13) 

 

        1cos 1 cos( )sin , 1,2,3.
j

n j l n j j n j lk e n n J ax ax J ax n j                    (A.14) 
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