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Abstract. The effect of length scale on the vibration response of a single-layer graphene sheet 

embedded in an elastic medium is studied using nonlocal Mindlin plate theory. The elastic 

medium is modeled using both Winkler-type and Pasternak-type elastic foundations. 

An explicit solution is derived for the natural frequencies of the graphene sheet. Through the 

analytical solution it is found that the vibration response of graphene sheet concerning the 

length scale effects considerably different from the results obtained by the classical theories. 

In comparison with the classical plate theory, the nonlocal model showed that the natural 

frequency of the graphene sheet decreases for smaller lengths of graphene sheet, higher aspect 

ratios, greater values of nonlocal parameter and stiffer elastic foundations.  

 

Nomenclature 
  material constant depending on the internal length (nm), 

b graphene sheet width (nm), 

   calibrating constant suitable to each material, 
h graphene sheet thickness (nm), 
l graphene sheet length (nm), 
  ,    Winkler modulus, shear modulus of the surrounding elastic medium, 

  half wave number, 
  half wave number, 

  force per unit area, 
  time (s), 
 ,   displacement of the point (x, y, 0) of graphene sheet along x and y-axis (nm), 
  deflection of the graphene sheet at point (x, y) calculated (nm), 
      classical stress tensor, 
  bending rigidity of graphene sheet, 
E Young’s modulus (N/m

2
), 

  shear modulus (N/m
2
), 

   ,     resultant moments (Nm), 

    twisting moment (Nm), 

    in-plane force (N), 

  ,    transverse shear forces (N), 

   ,    ,    ,    ,    ,    ,     linear strain tensor, 

   transverse shear correction coefficient, 

  Poisson’s ratio, 

  mass density (kg/m
3
), 

   ,    ,    ,    ,    ,     nonlocal stress tensor (N/m
2
), 

  nonlocal parameter, 
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  ,    rotational displacement (nm), 

   transverse displacement (nm), 

    related order natural frequency of the transverse vibration, 

   Laplacian operator in 2D Cartesian coordinate system, 

 

1. Introduction  

Since the discovery of carbon nanostructures, extensive research studies have been conducted 

for characterizing the mechanical, chemical and electronical properties of such structures 

[1, 2]. A large number of research communities have reported properties of several allotropes 

of carbon such as diamond and graphite (3D), graphene sheets (2D), nanotubes (1D) and 

fullerenes (0D) [3, 4, 29-31]. Graphene is a two dimensional single layer of sp  bonded 

carbon atoms densely packed in a honeycomb crystal structure. Graphene sheets have been 

recognized as attractive materials in nanoelectronics, nanosensors and micromechanical 

resonators due to the especial electronical and mechanical properties originating from their 

distinguished form and size [5, 6, 29-31]. In recent years, the investigation of mechanical 

behavior of graphene sheets has become an interesting subject and hence a few techniques 

and experimental methods have been used for investigating the properties of graphene 

sheets [7]. Accordingly, several studies have been reported in the literature using both 

molecular dynamics simulation and continuum mechanics models [8-10] for characterizing 

the viberational behavior of graphene sheets. For example, Sakhaee-pour et al. [8] modeled 

the vibrational behavior of defect-free single-layered graphene sheets at constant temperature 

using molecular structural mechanics. Using the concept of classical plate theory, Behfar and 

Naghdabadi [9] analyzed also the vibrational behavior of a multi-layered graphene sheet 

embedded in an elastic medium. However, the classical models have some drawbacks which 

restrict their generality and accuracy. For example, molecular dynamics simulations are 

purely computational and also the classical theories are not able to consider intrinsic size 

dependence in the elastic solutions of nanoscaled structures [11, 12]. Therefore, the modified 

form of the classical continuum theory (called the nonlocal elasticity theory) that takes into 

account the size effect of nanostructure materials, may provide a more accurate model to deal 

with small scale influences [13, 14]. Recently, bending, vibration, and buckling of graphene 

sheets have been investigated using nonlocal elasticity theory [15-17, 32-44]. For example, a 

nonlocal plate model was formulated by Lu et al. [16] to examine the length scale effect on 

bending and free vibration behavior of the Kirchhoff and the Mindlin plates. Murmu and 

Pradhan [18] investigated the vibration response of nanoplates under uniaxially pre-stressed 

conditions using nonlocal elasticity theory. In addition to the carbon nanostructures which are 

often used as embedded parts in elastic mediums [9, 19-21], graphene sheets can be also 

employed in manufacturing of the polymer composites to increase the strength of such 

materials. Pradhan and Phadikar [19] studied the vibration response of multilayered graphene 

sheets embedded in polymer matrix using nonlocal continuum plate theory and showed that 

the nonlocal effect is quite significant in the continuum model of graphene sheet.  

In this paper, the vibration of a single-layer graphene sheet embedded in an elastic 

medium and in the presence of length scale is studied based on the nonlocal Mindlin plate 

model. Analytical solutions for the graphene sheet with all the four edges simply supported 

are derived by solving the governing equations and considering the boundary conditions by 

Navier’s approach. The influence of nonlocal parameter on the nondimensional frequency 

response of the graphene sheets with different parameters such as aspect ratio, vibrational 

mode and the length of graphene sheet are discussed in detail.  

 

2. Nonlocal elasticity plate model 

The basic concept of nonlocal elasticity, proposed by Eringen [14], is applied here for a 

rectangular plate model to predict the natural frequency of a single-layer graphene sheet 
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embedded in an elastic medium. As shown in Fig. 1, the graphene sheet is modeled as a 

moderately thick rectangular plate resting on two-parameter elastic foundation with the elastic 

modulus  , Poisson’s ratio  , uniform thickness  , length   and width  . A coordinate system 
(     ) is also defined in Fig. 1 with  ,   and   axes along the length, width and thickness of 

the graphene sheet, respectively.  
 

 
a) 

 
b) 

 

Fig. 1. Geometry of the considered graphene sheet embedded in elastic medium. 
 

On the basis of the Mindlin plate theory, the governing differential equations of motion for 

the free vibration of the graphene sheet can be explained as follows [22] 
 

                
 

  
     ̈,                                                                                       (1a) 

 

                
 

  
     ̈,                                                                                      (1b) 

 

               ̈ ,                                                                                                       (1c) 
 

where     and     are the resultant moments,     is the twisting moment, and    and    

are the transverse shear forces. All the aforementioned moments are per unit length.    and 

   are also the rotational displacements about   and   axes, respectively and     is the 

transverse displacement. In equation (1),   indicates also the time,   is the mass density and p 

is the force per unit area applied to the graphene sheet. It should be noted that in this paper, 

the symbol “,” is used to show derivative operator. For example,       is equal to       ⁄ . 

Nonlocal elasticity theory states that the stress at each point in an elastic continuum medium 

depends not only on the strain of the same point but also on the strains at all other points in 

the domain [13, 14]. The nonlocal constitutive equations for a three-dimensional problem can 

be expressed as 
 

(        )            ,                                                                                                   (2) 
 

where              and     are the Laplacian operator, the stress tensor of the nonlocal 

elasticity, the classical stress tensor and the linear strain tensor, respectively.   is also a 

material constant (called the nonlocal parameter) which depends on the internal length   [23] 

(such as the     bond length, lattice parameter, granular size) and the external length   
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(such as the graphene sheet length) of the system.  

Using equation (2), nonlocal stress constitutive relations can be written as: 
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Here   and    are shear modulus and calibrating constant suitable to each material, 

respectively. For the bending analysis of micro/nanoplates using nonlocal elasticity theory the 

value of scale coefficient or nonlocal parameter (     or  ) has been considered in the range 

between 0 and 2 nm [17]. The general strain-displacement relations are expressed as 
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where u, v, w are the displacements of a given point in the graphene sheet. The stress 

resultant-displacement relations have been also given in [24] as: 
 

    ∫       
  ⁄

   ⁄
                                                                                                         (5a) 

 

    
 ∫       

  ⁄

   ⁄
                                                                                                      (5b) 

 

where    is the transverse shear correction coefficient. Using equations (4a) to (4f) and (5a,b), 

the resultant bending moments, the twisting moment, and the transverse shear forces per unit 

length can be obtained from 
 

    (   )
 [             ]   (          ),                                                           (6a) 

 

    (   )
 [             ]   (          ),                                                          (6b) 
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128 A.T. Samaei, M.R.M. Aliha, M.M. Mirsayar



where        (    )⁄  is the bending rigidity of the graphene sheet. By ignoring the 

effect of nonlocal parameter (   ) in equations (6a) to (6e), the stress-resultant displacement 

relations will be identical to the relations obtained from the classical (or local) plate model. In 

addition, the in-plane edge load provides a force component for a deflected plate in transverse 

direction as: 
 

          ,                                                                                                                           (7) 
 

where     is the in-plane edge load per unit length. Consequently, by substituting equations 

(6a) to (6e) and (7) into equations (1a) to (1c), the governing differential equations of motion 

using nonlocal Mindlin plate theory are derived as follows: 
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where 2

s sk K l D and 4

w wk K l D  are the dimensionless shear and Winkler foundation 

coefficients, respectively. It is worth mentioning that the aforementioned governing 

differential equations are reduced to those of the classical Mindlin plate model when the scale 

coefficient (   ) becomes equal to zero.  

 

3. Solution using Navier’s approach 

In Navier’s approach, the generalized displacement field is expanded in trigonometric series 

such that the boundary conditions of the problem are satisfied. In the following, the solution 

of governing differential equations obtained in previous section for the rectangular plates with 

simply supported boundary conditions is presented using Navier's method. The simply 

supported boundary conditions for the plate model are 
 

                                                                                                            (9a) 
 

                                                                                                           (9b) 
 

The general form of expanded displacement components are assumed to be as 
 

   ∑ ∑       (   )    (   )        
 
   

 
   ,                                                         (10a) 
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   ,                                                         (10b) 
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where            and        are constant coefficients and    and    are defined as    
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   ⁄  and        ⁄ . Also   and   are the half wave numbers.     is also the related 

natural frequency of the transverse vibration.  

By substituting equations (10a) to (10c) into equations (8a) to (8c), one get 
 

[

         
         
         

] {
 
 
 
}  {

 
 
 
}                                                                                                 (11) 

 

where coefficients     through     are given in Appendix. By setting the determinant of the 

coefficient matrix [ ] equal to zero, the natural frequencies of the single-layer graphene sheet 

embedded in the elastic medium are obtained from the solution of characteristic equation for 

each combination of   and  . The lowest value of natural frequency corresponds to the mode 

where the transverse deflection is dominant, whereas the other two frequency responses are 

much higher and related to the shear modes [25]. 

 

4. Results and discussion   

4.1. Comparative studies. Adopting the nonlocal Mindlin plate theory, as an example 

the vibration of moderately thick rectangular graphene sheet embedded in an elastic medium 

is investigated in detail for various geometries (i.e. different aspect ratios and nonlocal 

parameters). Consider a typical single layer graphene sheet with two opposite edges simply 

supported under uniformly distributed in-plane loads resting on Winkler/Pasternak elastic 

foundation. The length, width and thickness of graphene sheet are taken as          
        and          , respectively. The following values are also considered for the 

mechanical properties of the graphene:       ,      ,              and    
       . In order to examine the accuracy of the present solution, the frequency ratio defined 

as: 
 

                
                                                                 

                                                                  
               (12) 

 

has been compared in Fig. 2 with the micro/nanoplates frequency results reported by Lu et al. 

[16] for the thin and moderately thick rectangular micro/nanoplates and for different values of 

n, m and e0 a. The good agreement that exists between the two sets of results demonstrates the 

accuracy of the developed nonlocal Mindlin theory for investigating the vibration response of 

the graphene sheets. 
 

 
 

Fig. 2. Comparison between the results obtained in the present study and with those reported 

by Lu et al [20] for frequency ratio against different scale coefficient (     ). 
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4.2. Small scale effect on the frequency ratio of the graphene sheet. After verifying 

the accuracy of the present analytical solution, the following new results are presented for the 

graphene sheets under external in-plane loads and resting on elastic foundation. Figures 3 to 7 

show the influence of scaling coefficient (   ), surrounding elastic medium (   and   ), 
aspect ratio (  ⁄ ), length of graphene sheet ( ) and the mode of vibration ( ) on the 

frequency ratio of graphene sheet based on the nonlocal elasticity solutions. It can be 

demonstrated that by setting        in the governing vibration equations of the nonlocal 

plate (i.e. equations (8a) to (8c)), the classical elastic plate vibration equations (presented by 

Hashemi et al. [24]) are obtained. In addition, by setting      and     in equations (8a) 

to (8c) the nonlocal solution for the free vibration of a beam is obtained that is consistent very 

well with the Reddy’s results [26].  

Figure 3 shows the variations of the frequency ratio of the graphene sheet (for the first 

natural mode) with plate length and for different values of the nonlocal parameter (   ). The 

nonlocal parameter was chosen between   to     because according to Sudak [27], (   ) 

should be smaller than      for single-walled carbon nanotubes. For plotting the curves of 

Fig. 3, Winkler and shear modulus parameters were considered to be constant and equal to 

       and     , respectively and the modes of vibration were assumed as     and 

   . As it is seen from Fig. 3, the length scale coefficient decreases the frequency ratio (i.e. 

the natural frequency of the graphene sheet). Moreover, according to this figure, while for the 

small lengths of the plate, the non-local parameter affects significantly the value of natural 

frequency, its influence becomes negligible for the larger plate lengths (typically        ). 

In addition when the nonlocal parameter increases, the natural frequencies of the nonlocal 

solutions become smaller than those of the classical solutions because of the negative sign of 

    term in equations (8a) to (8c).  
 

 
 

Fig. 3. Variations of frequency ratio with graphene sheet length (l) for different nonlocal 

parameters. 
 

Figure 4 displays the variations of frequency ratio with the length of graphene sheet for 

different modes of vibration. It can be seen from Fig. 4 that for any given plate length, the 

corresponding value of natural frequency of the graphene sheet becomes smaller for the 

higher frequency mode numbers. The deference between the results of mode numbers 

increases by decreasing l showing the significant influence of nonlocal solution on the 

frequency response of graphene sheets having smaller plate lengths. Furthermore, at lower 

modes of vibration and for the higher lengths of plate all the results converge to the classical 

frequency of local plate [24] and the influences of small scale effects disappear.  
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Fig. 4. Variation of frequency ratio with graphene sheet length (l) for different modes of 

vibration     (    and           ). 
 

4.3. Surrounding elastic medium effect on the frequency ratio of the graphene 

sheet. In this study, the single-layer graphene sheet embedded in an elastic medium was 

investigated using a Pasternak model with adding a shear layer to the Winkler model. Several 

studies have also been performed to predict the mechanical characteristics of carbon 

nanostructures (such as natural frequency and critical buckling loads) by employing a plate or 

beam on an elastic foundation [19, 20]. The graphene sheet embedded in an elastic medium 

can be simulated as a rectangular plate and the surrounding elastic medium with a Winkler-

type elastic foundation. When the shear stiffness of the foundation is also taken into account, 

the two parameter foundation such as Pasternak foundation should be used. To study the 

effect of surrounding elastic medium on the frequency analysis of the graphene sheet, 

frequency ratio is analyzed here for different nonlocal parameters, Winkler and shear 

modulus. The variation of the frequency ratio (               ⁄ ) with nonlocal parameter has 

been displayed in Fig. 5 for different values of foundation stiffness(  ). For this plot, the 

shear modulus parameter    was considered zero. According to Fig. 5, the effect of Winkler 

modulus parameter is more pronounced for larger values of nonlocal parameter (typically 

for           ) such that the frequency ratio decreases dramatically for the stiffer 

foundations and greater nonlocal parameters.  
 

 
 

Fig. 5. Influence of small scale effects on the frequency ratio of graphene sheet for various 

Winkler modulus parameters   . 
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Similarly, Fig. 6 illustrates also the effect of shear modulus parameter    on the frequency 

ratio of the graphene sheet in the presence of nonlocal parameter. The elastic medium was 

modeled as a Pasternak type foundation model with        and the shear modulus 

parameter was varied as follows:              . These values for the shear modulus 

parameter (  ) were also used by Liew et al. [28]. It can be seen that by increasing the shear 

modulus parameter of elastic medium the frequency ratio of graphene sheet resting on a 

Pasternak type model foundation decreases for any given nonlocal parameters. Again, 

reduction in the frequency ratio becomes more noticeable for the greater nonlocal parameters. 
 

 
 

Fig. 6. Influence of small scale effects on the frequency ratio of graphene sheet for various 

shear modulus parameters   . 
 

4.4. Effect of aspect ratio on the frequency ratio of the graphene sheet. The 

variation of the frequency ratio (               ⁄ ) versus the aspect ratio (  ⁄ ) for the 

considered rectangular Mindlin plate (graphene sheet) has been presented in Fig. 7 for 

different values of    . According to Fig. 7, the results obtained from nonlocal elastic 

solution are smaller than the corresponding results of the classical solution for the all aspect 

ratios. In addition the frequency ratio reduces by increasing   ⁄ . It can be also seen that the 

length scale effects are more pronounced in vibration of rectangular graphene sheets than the 

strip-type graphene sheets (nanoribbons). 
 

 
 

Fig. 7. Variations of frequency ratio with aspect ratio (  ⁄ ) for different nonlocal 

parameters,(    ,    ). 
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5. Conclusions 

-  The vibration response of a single-layer graphene sheet embedded in an elastic medium was 

studied using nonlocal Mindlin plate theory. 

-  An explicit solution which takes into account the influence of length scale and surrounding 

elastic medium was derived for obtaining the natural frequencies of micro/nanoscaled 

Mindlin plates (such as graphene sheets). 

-  It was found that the effect of small scale is more pronounced for higher modes of 

vibration, greater Winkler and shear modulus parameters and larger length/width aspect 

ratios. 

-  The comprehensive model presented in this study provides useful results for vibration 

design aspects of NEMS devices such as graphene vibrators. 

 

Appendix 

Coefficients     through     are: 
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