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Abstract. Layered structure of rocks strongly influences propagation of hydraulic fractures 
widely used in practice to increase oil and gas production. The paper aims to facilitate modeling 
of hydraulic fractures. We develop a method to overcome the main difficulty, which arises 
when modeling fractures in layered systems: the need in building Green’s functions for systems 
of layers. The method employs highly efficient fast Fourier transform (FFT) in frames of the 
difference equations method. Its key computational parameters are established by studying 
bench-mark problems. Green’s functions with log-type singularity are included into the theory 
and the algorithm developed. The accuracy of the method and its application are illustrated with 
numerical examples.   
Keywords: layered structures; Green’s function; hydraulic fractures; Fourier transform; 
boundary element method. 
 
 
1. Introduction 
Solving problems for systems of layers, containing internal cracks, cavities, pores, inclusions 
and/or interacting grains, is important for various applications of continuum mechanics, 
including hydraulic fractures, mining, geomechanics, nano-technology, etc. To account for the 
internal structure of a layer, the boundary element methods (BEM) is a good choice when 
fundamental solutions entering appropriate boundary integral equations (BIE) are known or 
calculated in advance. However, except for the simplest cases of homogeneous infinite space 
or bonded half-spaces, finding the fundamental solutions (Green’s functions) is quite involved 
and time expensive. It may be notably simplified if the geometry of a problem suggests using 
methods ad hoc. Specifically, simplifications become possible when the layers have parallel 
plane or spherical (circular in 2D) boundaries. These cases, being of practical significance, we 
focus on building Green’s functions for them. For certainty, the case of layers with plane 
parallel boundaries is considered. In particular, it is of prime interest for modeling hydraulic 
fractures.  

The specific geometry of layers suggests using the Fourier expansions/transforms. Staring 
from early sixties of the last century [4,5,22,23], this approach to solving problems for multi-
layered media has been employed in numerous papers (e.g. [1,2,6,10–21,26–29]). However, to 
the date the advantage of using the fast Fourier transform (FFT) has not been employed except 
for a few papers concerning with particular problems [1,13,14]. The case of Green’s functions 
with log-type singularity, which tend to infinity with growing distance from a source point, has 
even stayed out of the general scheme sketched in [11].  
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The objective of the present paper is to make a step in developing universal algorithms 
employing the fast Fourier transform (FFT) for the problems for layered structures. The log-
type singular solutions are to be included into the general scheme. For the beginning, we 
develop such an algorithm and extend the theory to log-type singularities for plane harmonic 
problems. The efficiency of the method suggested is illustrated by examples.  

 
2. Problem formulation 
For certainty, we discuss the problem formulation in terms used in the elasticity theory. 
Consider a package of 𝑛𝑛 elastic layers with plane parallel boundaries (Fig. 1).  
 

 
Fig. 1. Scheme of a layered structure. 

 
The layers may contain cracks, cavities, pores, inclusions, interacting grains, etc. We 

numerate the layers from 1 to n and boundaries from 0 to 𝑛𝑛. The superscript “i” will denote that 
a quantity refers to the i-th layer or to the i-th contact. The axes 𝑥𝑥2 and 𝑥𝑥3 are directed along 
the boundaries in the horizontal plane. The unit normal to layer boundaries is directed along the 
axis 𝑥𝑥1. Values, corresponding to the top and bottom boundaries of the 𝑖𝑖-th layer, are marked 
with a subscript “𝑡𝑡” and “𝑏𝑏”, respectively. Then the displacement discontinuity vector is  
𝛥𝛥𝑢𝑢𝑖𝑖 =  𝑢𝑢𝑡𝑡𝑖𝑖 −  𝑢𝑢𝑏𝑏𝑖𝑖+1.  

For a system of n layers, the partial differential equations (PDF) are: 
𝐿𝐿𝑖𝑖𝑢𝑢 = 0   (𝑖𝑖 = 1, … , 𝑛𝑛), (1) 
where 𝐿𝐿𝑖𝑖 is a differential operator with physical constants of the 𝑖𝑖-th layer. Specifically, for 
elasticity problems, it is the Lame operator; for harmonic problems, it is the Laplace operator.   

The contact conditions at interfaces may include continuity of tractions q  
𝑞𝑞𝑡𝑡𝑖𝑖 = 𝑞𝑞𝑏𝑏𝑖𝑖+1 = 𝑞𝑞𝑖𝑖    (𝑖𝑖 = 1, … ,𝑛𝑛 − 1)  (2) 
and linear dependence of the displacement discontinuity 𝛥𝛥𝛥𝛥 on the traction  
−𝛥𝛥𝑢𝑢𝑖𝑖 = 𝐴𝐴𝑐𝑐𝑖𝑖𝑞𝑞𝑖𝑖, (3) 
where 𝐴𝐴𝑐𝑐𝑖𝑖 is a square matrix of contact interaction on the boundary between layers 𝑖𝑖 and 
𝑖𝑖 + 1. If a contact is ideal, then 𝐴𝐴𝑐𝑐𝑖𝑖 = 0 and 𝛥𝛥𝑢𝑢𝑖𝑖 = 0. 

On the boundaries of cracks and cavities, the boundary conditions are assigned as   
−𝛥𝛥𝛥𝛥 = 𝐵𝐵𝑐𝑐𝑞𝑞 + 𝛥𝛥𝑢𝑢0, (4) 
where 𝐵𝐵𝑐𝑐 is a symmetric matrix and 𝛥𝛥𝑢𝑢0 is a prescribed displacement discontinuity. The 
inversion of (4) 𝑞𝑞 = −𝐵𝐵𝑐𝑐−1𝛥𝛥𝛥𝛥 + 𝑞𝑞0  with 𝑞𝑞0 = −𝐵𝐵𝑐𝑐−1𝛥𝛥𝑢𝑢0 includes the case when a traction 
𝑞𝑞0 is assigned. The particular case of assigned tractions corresponds to 𝐵𝐵𝑐𝑐−1 = 0; then  
𝑞𝑞 =  𝑞𝑞0  (5) 
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The problem consists of finding the solution to (1) under the contact conditions (2) and 
(3) and the boundary conditions (4) or (5).   

 
3. Green’s function 
By using the theory of potential, the problem is reduced to a boundary integral equation (e.g. 
[3, 7, 8]). It includes the Green’s functions. For a layered system, the latter are unknown and to 
be found by solving the equation: 
𝐿𝐿𝑖𝑖𝑈𝑈(𝑥𝑥, 𝑦𝑦) = −𝛿𝛿(𝑥𝑥 − 𝑦𝑦)𝐼𝐼  (6) 
for homogeneous (without cracks, cavities, etc.) layers under the contact conditions (2), (3). In 
(6), 𝐼𝐼 is the unit matrix; 𝛿𝛿(𝑥𝑥) is the Dirac delta function. The Green’s function may be found 
by following the line of the paper [11]. It is as follows.  

Let the singular point x on the right hand side of (6) is a point 𝑥𝑥𝑘𝑘 of the 𝑘𝑘-th layer in the 
layered system (Fig. 2a). Consider an infinite homogeneous media with elastic properties of the 
considered layer. The Green’s function for such a medium is the known fundamental 
solution 𝑈𝑈0(𝑥𝑥,𝑦𝑦), say Kelvin’s solution of the elasticity theory. The 𝑙𝑙-th column of 𝑈𝑈0 provides 
the displacements 𝑢𝑢𝑡𝑡𝑘𝑘 and tractions 𝑞𝑞𝑘𝑘 on the top boundary of the 𝑘𝑘-th layer, and the 
displacements 𝑢𝑢𝑏𝑏𝑘𝑘 and tractions 𝑞𝑞𝑘𝑘−1 on its bottom boundary.  
 

 
                           (a)                                               (b)                                    (c) 

Fig. 2. Schemes to find the Green’s matrix. 
 

The needed Green’s function 𝑈𝑈(𝑥𝑥,𝑦𝑦) is represented as the sum: 
𝑈𝑈 =  𝑈𝑈0 + 𝑈𝑈𝑎𝑎, (7) 
where 𝑈𝑈𝑎𝑎(𝑥𝑥,𝑦𝑦) is an additional matrix serving to meet the contact conditions (2), (3). This 
matrix is non-singular in all the layers including the layer k. It is found by considering separately 
the upper package of layers (Fig. 2b) and lower package of layers (Fig. 2c) under the loads 𝑞𝑞𝑘𝑘 
and 𝑞𝑞𝑘𝑘−1, respectively. Hence, the condition (2) of continuity of the tractions is met.  

After solving the elasticity problems for these packages, we obtain the displacements 𝑢𝑢∗ 
in the upper and lower packages. In particular, the displacements 𝑢𝑢𝑏𝑏∗𝑘𝑘+1on the bottom boundary 
of the layer k + 1 and 𝑢𝑢𝑡𝑡∗𝑘𝑘−1 on the top boundary of the layer k - 1 are known. However, in 
general, the differences 𝑢𝑢𝑡𝑡𝑘𝑘 −  𝑢𝑢𝑏𝑏∗𝑘𝑘+1 and  𝑢𝑢𝑡𝑡∗𝑘𝑘−1 −  𝑢𝑢𝑏𝑏𝑘𝑘 do not satisfy the contact conditions (3) 
on the top and bottom boundaries of the k-th layer. There appear known discrepancies in the 
conditions (3), which are to be removed. It is done by solving the problem for the whole system 
(Fig. 2a) with the prescribed discontinuities (equal to the assigned discrepancies taken with the 
minus sign) on the top and bottom boundaries of the  
k-th layer and with contact conditions (3) on remaining contacts. The correcting solution 𝑢𝑢�  is 
easily found by the sweep method. Finally, the additional matrix is 
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𝑈𝑈𝑎𝑎 =  𝑈𝑈∗ +  𝑈𝑈� (8) 
Then the whole Green’s matrix 𝑈𝑈 becomes the sum of three matrices  

𝑈𝑈 =  𝑈𝑈0 + 𝑈𝑈∗ +  𝑈𝑈�, (9) 
of which 𝑈𝑈0 = 0 outside the 𝑘𝑘-th layer and 𝑈𝑈∗ = 0 inside this layer. In general, the matrix 𝑈𝑈� is 
non-zero in all the layers. Thus, to find the Green’s matrix we have to solve three similar 
standard problems. It can be efficiently done by using the Fourier transform and the sweep-
method [11]. 
 
4. Plane harmonic problem with using FFT  
For a plane harmonic problem, the potential u in each layer satisfies the Laplace equation:   
∆𝑢𝑢 =  𝜕𝜕

2𝑢𝑢
𝜕𝜕𝑥𝑥12

+ 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥22

= 0 (10) 
The corresponding vector of the flux q is  

𝑞𝑞 = 𝑘𝑘∇𝑢𝑢 (11) 
Herein, k is the conductivity, taken with the minus sign, in problems of heat (current, 

fluid) flow; 𝑘𝑘 =  𝐸𝐸/[2(1 +  𝜈𝜈)] in anti-plane elasticity problems with E being the Young’s 
modulus, ν the Poisson’s ratio.  

Instead of the Fourier transform on an infinite interval, we consider a finite interval 
[−𝐴𝐴,𝐴𝐴]. Its length 2𝐴𝐴 should be sufficiently large to replace an infinite layer with a periodical 
system having the period 2𝐴𝐴. Clearly, the period 2𝐴𝐴  should notably exceed the thickness of a 
layer, containing the source point, and also the characteristic size of the structural elements, say 
cavities, within the layer. Below we shall establish quantitative estimations of 2𝐴𝐴, which may 
be used when building the Green’s functions.  

It is of essence to perform direct and inverse transforms as efficient as possible. This 
suggests using the fast Fourier transform (FFT) [13,14]. Then the number N of sampling points 
is a degree of 2: 𝑁𝑁 = 2𝑚𝑚 where m is non-zero positive integer. The sampling points 𝑥𝑥𝑗𝑗 are 
uniformly distributed on the interval [−𝐴𝐴,𝐴𝐴]. For a function 𝑓𝑓(𝑥𝑥) with values 𝑓𝑓𝑗𝑗 = 𝑓𝑓(𝑥𝑥𝑗𝑗) at the 
sampling points 𝑥𝑥𝑗𝑗 ( 𝑗𝑗 = −𝑁𝑁/2, … ,𝑁𝑁/2 − 1), the direct transform, marked with wave, gives its 
image 𝑓𝑓𝑘𝑘� = 𝑓𝑓(𝑠𝑠𝑘𝑘) at 𝑁𝑁 points 𝑠𝑠𝑘𝑘 uniformly distributed on the interval [−𝐴𝐴,𝐴𝐴] of the axis 𝑠𝑠. For 
certainty, the direct FFT is defined as  
𝑓𝑓𝑘𝑘� = 1

𝑁𝑁
∑ 𝑓𝑓𝑗𝑗exp (−2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋/𝑁𝑁) 𝑗𝑗=𝑁𝑁/2−1
𝑗𝑗=−𝑁𝑁/2  (12) 

Then the transform inverse to (12) is: 
𝑓𝑓𝑗𝑗 = ∑ 𝑓𝑓𝑘𝑘� exp �2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋

𝑁𝑁
�𝑘𝑘=𝑁𝑁/2−1

𝑘𝑘=−𝑁𝑁/2 , (13) 
where 𝑖𝑖 = √−1. From now on, to keep track with results for layered systems, commonly 
presented in terms of the Fourier transform on the infinite interval or in terms of Fourier series, 
we shall employ the usual notation of original functions and their images. We shall write a 
discrete function 𝑓𝑓𝑗𝑗 as 𝑓𝑓(𝑥𝑥) and its discrete image 𝑓𝑓𝑘𝑘�  as 𝑓𝑓(s).  

With these agreements, application of the FFT (12) to (10) along the 𝑥𝑥2-axis yields:    
∆𝑢𝑢� =  𝜕𝜕

2𝑢𝑢�
𝜕𝜕𝑥𝑥12

− 𝑠𝑠2𝑢𝑢� = 0 (14) 

The image 𝑞𝑞�𝑖𝑖 of the component 𝑞𝑞1 of the flux q in the i-th layer is: 
𝑞𝑞�𝑖𝑖 =  𝜅𝜅𝑖𝑖

𝜕𝜕𝑢𝑢�
𝜕𝜕𝑥𝑥1

   (𝑖𝑖 = 1, … ,𝑛𝑛) (15) 
By using (14), the contact conditions (2)-(4) are re-written in terms of images. Finally, a 

harmonic problem for n homogeneous layers is reduced to the algebraic system of difference 
equations in fluxes 𝑞𝑞�𝑖𝑖 on the boundaries of layers (see, e.g. [10, 11]):  
𝐴𝐴𝑖𝑖𝑞𝑞�𝑖𝑖−1 − 𝐶𝐶𝑖𝑖𝑞𝑞�𝑖𝑖 + 𝐵𝐵𝑖𝑖𝑞𝑞�𝑖𝑖+1 +  𝐹𝐹𝑖𝑖 = 0, (16) 
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where 𝐴𝐴𝑖𝑖 = -𝑅𝑅𝑡𝑡𝑡𝑡𝑖𝑖 ; 𝐶𝐶𝑖𝑖 =  −𝐴𝐴𝑐𝑐 +  𝑅𝑅𝑡𝑡𝑡𝑡𝑖𝑖 −  𝑅𝑅𝑏𝑏𝑏𝑏𝑖𝑖+1;  𝐵𝐵𝑖𝑖 =  𝑅𝑅𝑏𝑏𝑏𝑏𝑖𝑖+1; 𝐹𝐹𝑖𝑖 =  −∆𝑢𝑢�0𝑖𝑖  are the images of 
assigned discontinuities of the potential. For the harmonic problems considered, the coefficients 
are scalar; the explicit formulae for them are: 
𝑅𝑅𝑡𝑡𝑡𝑡 =  1

2
(𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑎𝑎)

𝑅𝑅𝑡𝑡𝑡𝑡 = −  1
2

(𝑅𝑅𝑠𝑠 − 𝑅𝑅𝑎𝑎)

𝑅𝑅𝑏𝑏𝑏𝑏 =  1
2

(𝑅𝑅𝑠𝑠 − 𝑅𝑅𝑎𝑎)

𝑅𝑅𝑏𝑏𝑏𝑏 =  −1
2

(𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑎𝑎)

,    
𝑅𝑅𝑠𝑠 =  2

𝜅𝜅𝑠𝑠
coth(𝑠𝑠𝑥𝑥1)

𝑅𝑅𝑎𝑎 =  2
𝜅𝜅𝑠𝑠

tanh(𝑠𝑠𝑥𝑥1) 
  (17) 

The images of the potential on boundaries of layers are obtained by employing the 
dependences used when deriving (16):  
𝑢𝑢�𝑡𝑡 =  𝑅𝑅𝑡𝑡𝑡𝑡𝑞𝑞�𝑡𝑡 + 𝑅𝑅𝑡𝑡𝑡𝑡𝑞𝑞�𝑏𝑏
𝑢𝑢�𝑏𝑏 =  𝑅𝑅𝑏𝑏𝑏𝑏𝑞𝑞�𝑡𝑡 +  𝑅𝑅𝑏𝑏𝑏𝑏𝑞𝑞�𝑏𝑏

  (18) 

The solution to the system (16) under assigned boundary conditions on external 
boundaries of a package, is promptly found by the highly efficient sweep method for any fixed 
frequency (wave number) s (see, e.g. [9,25]). Then the images of the solutions to the three 
standard problems, presented in the previous section, become known. Consequently, the image 
of the Green’s function becomes known, as well. Its inversion through (13) provides the needed 
Green’s function in the physical space.  

Alternatively, a system analogous to (16) may be written in terms of the images of the 
potential on upper boundaries of layers by employing the dependences (18).   
 
5. Choice of the period for building log-type Green’s function by FFT  
In contrast with 3D problems, the starting fundamental solution for 2D elliptic problems has 
log-type singularity. In particular, in 2D harmonic problems, the Green’s function for a 
homogeneous plane is: 
𝑈𝑈0 =  − 1

2𝜋𝜋
ln (𝑟𝑟), (19) 

where 𝑟𝑟 is the distance to the point source. It is clear that 𝑈𝑈0 tends to infinity with growing 𝑟𝑟. 
However, when applying the Fourier method at a finite interval of a length 2𝐴𝐴, a function is 
assumed periodic with the period 2𝐴𝐴. The fundamental solution for the periodic harmonic 
potential is: 

𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝0 =  −𝑅𝑅𝑅𝑅 1
2𝜋𝜋

ln �sin � 𝜋𝜋
2𝐴𝐴
𝑧𝑧��, (20) 

where 𝑧𝑧 = 𝑥𝑥2 + 𝑖𝑖𝑥𝑥1 is the complex coordinate in the system with the origin at the source point.  
 

 
Fig. 3. Graphs of the Green’s functions along the 𝑥𝑥2-axis for η = 20, 𝑥𝑥1 = 𝑑𝑑. 
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The question arises: which period 2𝐴𝐴 suffices using the Green’s function (19) for an 
infinite plane instead of the Green’s function (20) for a periodic (with the period 2A) problem? 
Clearly the answer depends on the characteristic size 2d of an area where the Green’s function 
is of interest for a problem considered. Introduce the parameter:  
𝜂𝜂 =  𝐴𝐴

𝑑𝑑
 (21) 

Take into account that the potentials are actually defined to arbitrary constants. This can 
be seen in Fig. 3, presenting the functions 𝑈𝑈0 and 𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝0  along the 𝑥𝑥2-axis for η = 20, 𝑥𝑥1 = 𝑑𝑑.  
To exclude the constants, when comparing 𝑈𝑈0 with 𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝0 , we use the measure 𝜁𝜁, defined as the 
ratio  
𝜁𝜁 = 𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷|С(𝑥𝑥1,𝑥𝑥2)|−𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷|С(𝑥𝑥1,𝑥𝑥2)|

𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷|С(𝑥𝑥1,𝑥𝑥2)| ∙ 100%, (22) 
where С(𝑥𝑥1,𝑥𝑥2) =  𝑈𝑈0 − 𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝0 ; D is a square region with the center at the source point and the 
side 2d. If С(𝑥𝑥1, 𝑥𝑥2) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 in some region, then 𝜁𝜁 = 0 in this region. The dependence of 𝜁𝜁 on 
the ratio 𝜂𝜂 =  𝐴𝐴/𝑑𝑑 is presented in Fig. 4.  
 

 
Fig. 4. Dependence of the ratio 𝜁𝜁 on the relative period 𝜂𝜂. 

 
It can be seen that 𝜁𝜁 tends to zero when 𝜂𝜂 grows. This confirms that with growing interval 

of periodicity, its ends exert rapidly decreasing influence on a region with sizes of order d under 
consideration. To the accuracy of 0.053 percent, the value of 𝜂𝜂 may be set 10 when using the 
function 𝑈𝑈0 instead of 𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝0 . 

 
6. Choice of the number of sampling points  
There are three plane harmonic problems, for which the Green’s functions of log-type have 
simple analytical forms. They serve us as benchmarks to properly choose the number of 
sampling points when employing the FFT to find Green’s functions for a layered medium. The 
first problem is that for a homogeneous medium with the Green’s function given by (19). The 
second is the problem for a half-plane with zero flux at its boundary. It serves to estimate 
influence of low-permeable (highly compliant in elasticity problems) layers above or/and below 
a layer with much greater permeability (rigidity). The third problem is for a half-plane with 
zero potential at its boundary. It corresponds to the opposite limiting case and serves to estimate 
influence of highly-permeable (highly rigid in elasticity problems) layers above or/and below 
a layer with much less permeability (rigidity). 
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The two limiting problems provide the thresholds of the accuracy of numerical finding 
the Green’s functions in a region of size 2𝑑𝑑 for various numbers 𝑁𝑁 of sampling points located 
on various intervals 2𝐴𝐴 of periodicity. The first problem, being intermediate, gives typical 
accuracy, when neighbors of a layer, containing the source point, have conductivity (rigidity), 
which does not drastically differs from that of the layer. The tests 1, 2 and 3 below refer, 
respectively, to the first, second and third problems. 

Test 1. Consider two homogeneous half-planes with a package of 𝑛𝑛 homogeneous layers 
between them. The point source acts in the 𝑖𝑖-th  layer. All layers have the same conductivity 
and ideal contacts at interfaces. Such a structure is actually a homogeneous isotropic plane. The 
Green’s function for it is given by (19).  

As above, distinguish the region of interest as a square 𝐷𝐷 with the center at the source 
point and the sides 2𝑑𝑑. The accuracy is estimated by the maximum relative error in this region: 
𝜉𝜉 = 𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷 �

𝑞𝑞𝑖𝑖
𝑎𝑎

𝑞𝑞𝑖𝑖
0� ∙ 100%, (23) 

where 𝑞𝑞𝑖𝑖𝑎𝑎 is the flux on the 𝑖𝑖-th boundary, corresponding to the additional function 𝑈𝑈𝑎𝑎(𝑥𝑥,𝑦𝑦) in 
(7); 𝑞𝑞𝑖𝑖0 is the flux defined by the exact fundamental solution (19). The errors, found for various 
numbers 𝑁𝑁 of the sampling points, are summarized in Table 1 when the relative period 𝜂𝜂 =
𝐴𝐴/𝑑𝑑 increases from 8 to 64. The results, presented in Table 1, are obtained for a particular 
structure consisting of five layers (𝑛𝑛 =  5); they stay the same for any other number of layers.  
 
Table 1. The relative error (in %) in the region 𝐷𝐷 as a function of 𝑁𝑁 and η for a homogeneous 
medium 

 𝑁𝑁 = 128 𝑁𝑁 = 256 𝑁𝑁 = 512 𝑁𝑁 = 1024 
𝜂𝜂 = 8 0.605 0.588 0.58 0.576 
𝜂𝜂 = 16 0.402 0.388 0.382 0.379 
𝜂𝜂 = 32 0.143 0.134 0.131 0.129 
𝜂𝜂 = 64 0.104 0.04 0.038 0.037 

 
From Table 1 it can be seen that the influence of the period on the accuracy is notably 

greater than the influence of the number of sampling points. Better accuracy for large values of 
η is due to the fact that with growing period 2A, the influence of its boundaries on the region of 
interest 𝐷𝐷 rapidly decreases.  

Test 2. Consider two half-planes, lower of which has the unit conductivity, while the 
upper has the conductivity tending to zero. The source point is located in the lower half-plane. 
We represent each of the half-planes by packages of layers of the same thickness and 
conductivity and find the additional solution 𝑈𝑈𝑎𝑎 in (7) by solving the problem for the layered 
system. 

 
Fig. 5. A point source in a half-space. 
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For impermeable upper half-plane (Fig. 5), the exact Green’s function is the sum of the 
Green’s function (19) for homogenous infinite plane and that of the reflected source, located 
symmetrically with respect to the boundary and having the same (unit) intensity:     
𝑈𝑈 = − 1

2𝜋𝜋
ln(𝑟𝑟) − 1

2𝜋𝜋
ln(𝑟𝑟∗), (24) 

where 𝑟𝑟∗ is the distance from the reflected source. 
The Green's function, found as a result of numerical calculations, must have the additional 

term 𝑈𝑈𝑎𝑎 close to the term corresponding to the reflected source. As an error, we consider the 
maximal relative error in the region 𝐷𝐷: 

𝜉𝜉 = 𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷 �
𝑞𝑞𝑖𝑖
𝑎𝑎−𝑞𝑞𝑖𝑖

∗

𝑞𝑞𝑖𝑖
∗ � ∙ 100%, (25) 

where 𝑞𝑞𝑖𝑖𝑎𝑎 is the calculated additional flux on the 𝑖𝑖-th boundary; 𝑞𝑞𝑖𝑖∗ is the flux corresponding to 
the reflected source in (24). The values of 𝜉𝜉 are summarized in Table 2.  
 
Table 2. The relative error (in %) (× 10−4) in the region 𝐷𝐷 as a function of N and η for a half-
space with impermeable boundary. 

 𝑁𝑁 = 128 𝑁𝑁 = 256 𝑁𝑁 = 512 𝑁𝑁 = 1024 
𝜂𝜂 = 8 2.5755 2.575 2.5748 2.5747 
𝜂𝜂 = 16 2.5703 2.57 2.5698 2.5697 
𝜂𝜂 = 32 2.5637 2.5635 2.5633 2.5632 
𝜂𝜂 = 64 2.562 2.561 2.561 2.5609 

 
The data presented in Table 2 show that the error is practically the same for all the 

considered pairs N and η. It remains on the level of 2.57 ⋅ 10−4%. Therefore, the case of low-
conductive boundary is quite favorable for the accuracy of the method developed.  

Test 3. Consider again two half-planes, lower of which has the unit conductivity, while 
now the upper has the conductivity tending to infinity. In this case, the exact Green’s function 
is obtained by taking the reflected source with opposite sign:     
U =  𝑈𝑈0 +  𝑈𝑈∗ =  − 1

2𝜋𝜋
ln(𝑟𝑟) + 1

2𝜋𝜋
ln(𝑟𝑟∗)  (26) 

We again use equation (25) to estimate errors. The relative errors are summarized in 
Table 3.  

 
Table 3. The relative error (in%) in the region 𝐷𝐷 as a function of N and η for a half-space with 
a highly conductive boundary. 

 𝑁𝑁 = 128 𝑁𝑁 = 256 𝑁𝑁 = 512 𝑁𝑁 = 1024 
𝜂𝜂 = 8 1.212 1.177 1.16 1.152 
𝜂𝜂 = 16 0.804 0.777 0.764 0.758 
𝜂𝜂 = 32 0.286 0.269 0.261 0.257 
𝜂𝜂 = 64 0.21 0.08 0.076 0.074 

 
From the table it follows that for highly permeable boundary, the error is merely two-fold 

greater than that for the first problem. In the both cases, to improve the accuracy, it looks 
preferable to increase the interval of periodicity rather than the number of sampling points.  

The comparison of the results in Tables 1, 2 and 3 for the cases 1, 2, and 3, respectively, 
shows that, as could be expected, the case 1 is intermediate between the two limiting. Still, the 
results for the case 1 are closer to those for the case 3.    
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7. Application of the method to a harmonic boundary value problem 
Consider an example of building and using the harmonic Green’s function for a plane layered 
system. The j-th layer contains a cavity with the contour 𝐿𝐿𝑠𝑠 (Fig. 6). The region of interest D 
includes the parts by 𝐷𝐷𝑠𝑠 and 𝐷𝐷∗, which are respectively inside and outside the cavity. The 
contour 𝐿𝐿𝑠𝑠 is travelled in the direction which leaves the area 𝐷𝐷∗ to the left; the normal 𝑛𝑛 is 
directed to the right to this direction. The superscript plus (minus) refers to the limit from the 
side with respect to which the normal is outward (inward). The flux 𝑞𝑞𝑛𝑛0 is assigned on the 
counter 𝐿𝐿𝑠𝑠. The problem consists of finding the potential 𝑢𝑢 in the region 𝐷𝐷∗. 
 

 
Fig. 6. The geometric scheme for a cavity in layered structure. 

 
To find the solution, we need to build the Green’s functions 𝑈𝑈∗ and 𝑄𝑄∗ entering the 

complex boundary integral equations (C-BIE) for plane harmonic problems [8]: 

𝑅𝑅𝑅𝑅 �− 1
2𝜋𝜋 ∫ [𝑞𝑞𝑛𝑛+(𝜏𝜏)𝑈𝑈(𝜏𝜏 − 𝑧𝑧)𝑑𝑑𝑑𝑑 +  𝑢𝑢+(𝜏𝜏)𝑄𝑄(𝜏𝜏 − 𝑧𝑧)𝑑𝑑𝑑𝑑]𝐿𝐿𝑠𝑠

� = �
𝑘𝑘𝑘𝑘(𝑧𝑧),   𝑧𝑧 ∈ 𝐷𝐷∗

1
2
𝜅𝜅+𝑢𝑢+,   𝑧𝑧 ∈ 𝐿𝐿𝑠𝑠 

0,   𝑧𝑧 ∉  𝐷𝐷∗ +  𝐿𝐿𝑠𝑠

, (27) 

where 𝜏𝜏, 𝑧𝑧 are coordinates in the complex plane; 𝑞𝑞𝑛𝑛+ = 𝑞𝑞𝑛𝑛0 is the assigned flux. When having  𝑈𝑈 
and 𝑄𝑄 the solution to the BIE, given in the second line of (27), is found by the BEM. Having it, 
the first line of (27) provides the flux within the region 𝐷𝐷∗.  

We built the Green’s functions 𝑈𝑈 and 𝑄𝑄 by the method described in Sec. 3 and 4. 
Specifically, they are represented as the sums of known Green’s functions and additional 
functions 𝑈𝑈𝑎𝑎(𝜏𝜏, 𝑧𝑧) and 𝑄𝑄𝑎𝑎(𝜏𝜏, 𝑧𝑧):  
𝑈𝑈 = ln(𝜏𝜏 − 𝑧𝑧) + 𝑈𝑈𝑎𝑎(𝜏𝜏, 𝑧𝑧);      𝑄𝑄 = 𝑖𝑖 𝜅𝜅

+

𝜏𝜏−𝑧𝑧
+  𝑄𝑄𝑎𝑎(𝜏𝜏, 𝑧𝑧)   (28) 

The parameters of the FFT transform are chosen in accordance with estimates of Sec. 4 
and 5. Standard translations along the 𝑥𝑥2-axis are used to adjust the images, obtained for point 
sources in the local system with the origin at a source point, to the global system used in the 
BIE (27). 
 
8. Example of circular cavity in a layered structure 
Assume that there is a circular cavity of the radius 𝑅𝑅 ≤  ℎ𝑑𝑑 within the second layer of a three-
layered structure. The flux 𝑞𝑞𝑛𝑛0 is constant on the boundary of the cavity. The geometrical and 
physical parameters used for calculations are: 

• Half-heights of the layers: ℎ1  =  ℎ3  =  2ℎ2 
• Conductivities of the layers: 𝜅𝜅1 = 25𝜅𝜅2,  𝜅𝜅3 = 2𝜅𝜅2 
• The period 2𝐴𝐴 of the interval assumed in FFT: 2𝐴𝐴 = 40ℎ2 
• The number of sampling points of the FFT: 𝑁𝑁 = 1024 
• The number of boundary elements on the cavity contour: 𝑁𝑁𝑠𝑠 = 90 
• The total intensity of the assigned flux ∫ 𝑞𝑞𝑛𝑛0𝐿𝐿𝑠𝑠

𝑑𝑑𝑑𝑑 =  −1 
The results of calculations of the potential in the layered system with cavities of different 

radii are presented in Fig.7-10.  
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Fig. 7. The field of the potential for a circular cavity of radius 𝑅𝑅 =  10−4ℎ2. 

Fig. 8. The field of the potential for a circular cavity of radius 𝑅𝑅 =  0.1ℎ2. 

Fig. 9. The field of the potential for a circular cavity of radius 𝑅𝑅 =  0.5ℎ2. 

Fig. 10. The field of the potential for a circular cavity of radius 𝑅𝑅 =  0.9ℎ2. 

The results demonstrate that the method developed may serve for efficient solving 
harmonic and elasticity problems for layers with quite different thicknesses and physical 
properties. 
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