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Abstract. The present study is to focus on the steady state response due to moving load in a 
homogeneous, isotropic thermoelastic material with double porosity in the context of  
Lord-Shulman theory [1] of thermoelasticity with one relaxation time. The load is moving at a 
constant velocity along the one of the coordinate axis. Fourier transform has been applied to 
obtain normal stress, tangential stress, equilibrated stresses and temperature distribution. The 
resulting expressions are obtained in the physical domain by using numerical inversion 
technique. Numerically computed results for these quantities are depicted graphically to study 
the effect of porosity for normal force and thermal source. Some particular cases are also 
deduced from the present investigation. 
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1. Introduction 
Porous media theories play an important role in many branches of engineering including 
material science, the petroleum industry, chemical engineering, biomechanics and other such 
fields of engineering. Representation of a fluid saturated porous medium as a single phase 
material has been virtually discarded. The material with the pore spaces such as concrete can 
be treated easily because all concrete ingredients have the same motion if the concrete body is 
deformed. However the situation is more complicated if the pores are filled with liquid and in 
that case the solid and liquid phases have different motions. Due to these different motions, 
the different material properties and the complicated geometry of pore structures, the 
mechanical behavior of a fluid saturated porous thermoelastic medium becomes very difficult. 
So researchers from time to time, have tried to overcome this difficulty and we see many 
porous media in the literature. A brief historical background of these theories is  
given by de Boer [2,3]. 

Biot [4] proposed a general theory of three-dimensional deformation of fluid saturated 
porous salts. Biot theory is based on the assumption of compressible constituents and till 
recently, some of his results have been taken as standard references and basis for subsequent 
analysis in acoustic, geophysics and other such fields. Another interesting theory is given by 
Bowen [5], de Boer and Ehlers [6] in which all the constituents of a porous medium are 
assumed to be incompressible. The fluid saturated porous material is modeled as a two phase 
system composed of an incompressible solid phase and incompressible fluid phase, thus 
meeting the many problems in engineering practice, e.g. in soil mechanics. One important 
generalization of Biot's theory of poroelasticity that has been studied extensively started with 
the works by Barenblatt et al. [7], where the double porosity model was first proposed to 
express the fluid flow in hydrocarbon reservoirs and aquifiers. 
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The double porosity model represents a new possibility for the study of important 
problems concerning the civil engineering. It is well-known that, under super- saturation 
conditions due to water of other fluid effects, the so called neutral pressures generate 
unbearable stress states on the solid matrix and on the fracture faces, with severe (sometimes 
disastrous) instability effects like landslides, rock fall or soil fluidization (typical phenomenon 
connected with propagation of seismic waves). In such a context it seems possible, acting 
suitably on the boundary pressure state, to regulate the internal pressures in order to deactivate 
the noxious effects related to neutral pressures; finally, a further but connected positive effect 
could be lightening of the solid matrix/fluid system. 

Wilson and Aifanits [8] presented the theory of consolidation with the double porosity. 
Khaled, Beskos and Aifantis [9] employed a finite element method to consider the numerical 
solutions of the differential equation of the theory of consolidation with double porosity 
developed by Aifantis[8]. Wilson and Aifantis [10] discussed the propagation of acoustics 
waves in a fluid saturated porous medium. The propagation of acoustic waves in a fluid-
saturated porous medium containing a continuously distributed system of fractures is 
discussed. The porous medium is assumed to consist of two degrees of porosity and the 
resulting model thus yields three types of longitudinal waves, one associated with the elastic 
properties of the matrix material and one each for the fluids in the pore space and the fracture 
space. 

Beskos and Aifantis [11] presented the theory of consolidation with double porosity-II 
and obtained the analytical solutions to two boundary value problems. Khalili and 
Valliappan [12] studied the unified theory of flow and deformation in double porous media.  
Aifantis [13-16] introduced a multi-porous system and studied the mechanics of diffusion in 
solids. Moutsopoulos et al. [17] obtained the numerical simulation of transport phenomena by 
using the double porosity/ diffusivity continuum model. Khalili and Selvadurai [18] presented 
a fully coupled constitutive model for thermo-hydro –mechanical analysis in elastic media 
with double porosity structure. Pride and Berryman [19] studied the linear dynamics of 
double-porosity dual-permeability materials. Straughan [20] studied the stability and 
uniqueness in double porous elastic media. Various authors have [21-26] investigated 
problems on elastic solids, viscoelastic solids and thermoelastic solids with double porosity 
based on Darcy's law. 

Nunziato and Cowin [27] developed a nonlinear theory of elastic material with voids. 
Later, Cowin and Nunziato [28] developed a theory of linear elastic materials with voids for 
the mathematical study of the mechanical behavior of porous solids. Iesan and 
Quintanilla [29] derived a theory of thermoelastic solids with double porosity structure by 
using the theory developed by Nunziato and Cowin. Darcy's law is not used in developing this 
theory. So far not much work has been done on the theory of thermoelasticity with double 
porosity based on the model proposed by Iesan and Quintanilla [29]. Recently investigations 
have been started in the theory of thermoelasticity with double porosity [29] which has a 
significant application in continuum mechanics. 

The problem of determining the response of an elastic system subjected to a moving 
load has received considerable attention. Work in this area has been mostly motivated by the 
need to analyze the vibrations of such structures as bridges and rail/road tracks caused by 
moving vehicles. The design of highways, airport runways as well as the foundation problems 
in soil mechanics, particularly when the earth mass is supporting a heavy structure having a 
moving load over its free plane surface, lead to the investigation of the dynamic stress 
distribution associated with the problem. An important problem concerning such diverse 
fields as wave propagation, contact mechanics and tribology is the rapid motion of a line 
mechanical and/or thermal load over the surface of a half-space. Indeed, this is the case when 
(a) ground motion and stresses are produced by the surface blast waves due to explosives or 
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by supersonic aircraft (b) high velocity rockets sleds moving on guide rails. Such dynamical 
mechanical/thermal loading may produce severe deformation and temperature rise in a thin 
zone near the half-space surface and thereby causes excessive wear and even cracking near 
the contact zone. In many cases, the above described problem can be modeled as a plane-
strain steady state situation, involving an elastic half-plane under mechanical/thermal loading 
which moves over the half-plane surface of constant speed. 

The steady state assumption employed here has its own justification in the dynamic 
analysis of moving sources [30-33] and may yield reliable results when the 
mechanical/thermal load in question has been applied and moving for a long time. Kumar and 
Deshwal [34] investigated the steady state response due to moving loads in a micropolar 
generalized thermoelastic half space without energy dissipation. Kumar and Ailawalia [35] 
discussed the moving load response at thermal conducting fluid and micropolar solid 
interface. Sharma et al. [36] discussed the steady state response due to moving load in 
thermoelastic solid Media. Malekzadeh and Heydarpour [37] studied the response of 
functionally graded cylindrical shells under moving thermo-mechanical loads.  
Chatterjee et al. [38] studied the response of moving load due to irregularity in slightly 
compressible, finitely deformed elastic media. The role of shear deformation in dynamic 
behavior of a fully saturated poroelastic beam traversed by a moving load was studied by 
Kiani et al. [39].  

The present investigation is to determine the components of stress and temperature 
distribution in a homogenous, isotropic, thermoelastic half-space with double porosity due to 
moving mechanical/thermal sources.  Fourier transform technique has been applied to obtain 
the components of stress and temperature distribution. Numerical inversion technique has 
been applied to recover the resulting quantities in the physical domain.The resulting quantities 
are depicted graphically to study the effect of porosity for normal force and thermal source. 
Some particular cases are also deduced. 
 
2. Basic equations 
Following Iesan and Quintanilla [29] and Lord and Shulman [1], the constitutive relations and 
field equations for homogeneous thermoelastic material with double porosity structure 
without body forces, extrinsic equilibrated body forces and heat source can be written as: 
Constitutive relations: 

2ij rr ij ij ij ij ijt e e b d Tλ d µ d j d ψ bd= + + + − , (1) 

, 1 ,  i i ibσ αj ψ= + , (2) 

1 , ,   i i ibχ j γψ= + , (3) 
Equation of motion: 

( )
2

2
2

uu u b d T
t

µ λ µ j ψ b ρ ∂
∇ + + ∇∇ ⋅ + ∇ + ∇ − ∇ =

∂
d d , (4) 

Equilibrated stress equations of motion: 
2

22
1 1 3 21 1 ,b b u T

t
α j ψ α j α ψ γ κ j∂

∇ + − ∇ ⋅ − − +∇
∂

=
d  (5)

2
2

2
21 3 2 2 2 ,b d

t
u Tj γ ψ α j α ψ γ κ ψ∂

+ ∇ − ∇ ⋅ −∇ −
∂

+ =
d  (6) 

Equation of heat conduction: 

( )* 2 *
0 0 1 0 2 0.1K T T T T T

t
u Ct b γ j γ ψ ρ∂ ∇ = + + +∇ 


+

∂ 
d




 , (7) 
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where λ  and µ  are Lame's constants,  ρ is the mass density; ( )  3 2 tb λ µ α= + ; tα  is the 

linear thermal expansion; * C is the specific heat at constant strain,  iu is the displacement 
components; ijt  is the stress tensor; 1κ and 2κ  are coefficients of equilibrated inertia; j  and ψ  

are the volume fraction fields corresponding to pores  and fissures respectively; iσ  is the 
equilibrated stress corresponding to pores; iχ  is the equilibrated stress corresponding to 
fissures; *K  is the coefficient of thermal conductivity and 1 1 2, , , , ,b d b γ γ γ  are constitutive 
coefficients;  ijd is the Kronecker's delta; T  is the temperature change measured form the 

absolute temperature ( )0 0 0T T ≠ ; a superposed dot represents differentiation with respect to 
time variable t . 

1 2 3

ˆˆ ˆi j k
x x x
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

,    
2 2 2

2
2 2 2
1 2 3x x x

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
 

are the gradient and Laplacian operators, respectively. 
 
3. Formulation of the problem 
We consider a homogeneous, isotropic, thermoelastic material with double porosity structure 
in the undeformed state at uniform temperature 0T .The rectangular Cartesian coordinate 
system ( 1 2 3, , )x x x  having origin on the surface 3 0x =  with 3x -axis pointing vertically into 
the medium is introduced. A moving normal force or thermal source is assumed to be acting 
at the origin of the rectangular Cartesian coordinates. It follows from the description of the 
problem that all the considered functions will depend upon 1 3( , , )x x t . We thus obtain the 

displacement vector u
d

of the form 1 3( ,0, )u u u=
d

. 
Following Fung [40], Galilean transformation is introduced as 

* * *
1 1 3 3, ,x x Ut x x t t= + = = . (8) 

 
4. Solution of the problem 
To transform equations (4)-(7) to non-dimensional form, we define the following non-
dimensional quantities as: 

' * ' * ' ' ' '1 1 1 1
1 1 3 3 1 1 3 3 0 1 0

1 1 1 1 0

,   ,  , , , ,ij
ij

t
x x x x u u u u t

c c c c t
ω ω ω ω t ω t

b
= = = = = =  

2 2
' ' ' '1 1 1 1 1 1

1
1 1 0 1 1

 ,  , , , , i i i i
k k c cTT t t

T
ω ωj j ψ ω σ σ χ χ
α α αω αω

   
= = = = = =′ ′   

   
, (9) 

where
* 2

2 1
1 1 *

2 , C cc
K

ρλ µ ω
ρ

+
= = . 

Making use of dimensionless quantities given by (9) in equations (4)-(7), we obtain 
(suppressing the primes for convenience)  

2
2 1

1 1 2 3 4 5 2
1 1 1 1 1

ue Ta u a a a a
x x x x x

j ψ ∂∂ ∂ ∂ ∂
+ ∇ + + − =

∂ ∂ ∂ ∂ ∂
, (10) 

2
2 1

1 3 2 3 4 5 2
3 3 3 3 3

ue Ta u a a a a
x x x x x

j ψ ∂∂ ∂ ∂ ∂
+ ∇ + + − =

∂ ∂ ∂ ∂ ∂
, (11) 
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1

a a a a a a Te
x
jj ψ j ψ ∂

∇ + ∇ − − − + =
∂

, (12)

2
2 2

12 13 14 15 16 17 2
3

a a a a a a T
x

e ψj ψ j ψ ∂
∇ + ∇ − − − + =

∂
, (13) 

2 2 2 2
2

18 19 20 22 23 252 2 2 2
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21 24
1      

e T e TT a a a a a a a a
x x x x x x x x
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, (14) 

where 
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2
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The displacement components 1  u and 3u   are related by potential functions 1j and 1ψ  as 

1 1 1 1
1 3

1 3 3 1

,             u u
x x x x
j ψ j ψ∂ ∂ ∂ ∂

= − = +
∂ ∂ ∂ ∂

. (15) 

We define Fourier transform by 

( ) ( ) 1
1 1

i xf f x e dxxx
∞

−∞

= ∫ . (16) 

Using Eqs. (15) and (16) in the Eqs. (10)-(14) and assuming that 1 1, , , , 0 asTj j ψ ψ →

  

3x → ∞ , after simplification, we obtain  

( ) 3

4

1 1 2 3
1

, , , (1, , , ) im x
i i i i

i

T g g g B ej j ψ −

=

= ∑

   , (17) 

5 3
1 5

m xB eψ −= , (18) 
where ( ) 1, 2,3, 4im i =  are the roots of the equation   

8 6 4
21 4

2
3 0D E D E D E D E+ + + + =  (19) 

3

dD
dx

=  

and 5
5

1

1 am
a

x
 

= − 
 

, (20) 

1 2 3 4where  ,  ,  ,  E E E E  and 5E  are given in the Appendix I.                               
The coupling constants are given by 

1 2 3
1 2 3

0 0 0

, g  ,g  ; 1, 2,3, 4i i i
i i i

i i i

D D D i
D D

g
D

= − = = − =
 

0 1 2 3a ,nd , ,i i i iD D D D  are given in the Appendix II. 
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5. Boundary conditions 
We consider a moving normal force/thermal source acting at 3 0x =  along with the vanishing 
of tangential and equilibrated stresses. Mathematically, these boundary conditions on the 
surface 3 0x =  can be written as 

(i) ( )*
33 1 1t F xd= − , (21) 

(ii) 31 0t = , (22) 
(iii) 3 0σ = , (23) 
(iv) 3 0χ = , (24) 

(v) ( )*
2 1T F xd= , (25) 

where 1F  and 2F  are the magnitude of force and constant temperature applied on the 
boundary respectively and ( )d  is the Dirac delta function. 

Substituting the values of 1 1, , , andTj j ψ ψ

     from (17) and (18) in the boundary 
conditions (21)-(25) and with the aid of Eqs. (1)-(3), (9), (15) and (16), we obtain the 
corresponding expressions for components of stress and temperature distribution as 

1 3 2 3 3 3 4 3 5 3
33 1 1 2 2 3 3 4 4 5 5

1 Δ Δ Δ Δ Δ
Δ

m x m x m x m x m xt Q e Q e Q e Q e Q e− − − − − = + + + +  , (26) 

1 3 2 3 3 3 4 3 5 3
31 1 1 2 2 3 3 4 4 5 5

1 Δ Δ Δ Δ Δ
Δ

m x m x m x m x m xt R e R e R e R e R e− − − − − = + + + +  , (27) 

1 3 2 3 3 3 4 3
3 1 1 2 2 3 3 4 4

1 Δ Δ Δ Δ
Δ

m x m x m x m xU e U e U e U eσ − − − − = + + +  , (28) 

1 3 2 3 3 3 4 3
3 1 1 2 2 3 3 4 4

1 Δ Δ Δ Δ
Δ

m x m x m x m xV e V e V e V eχ − − − − = + + +  , (29) 

1 3 2 3 3 3 4 3
31 1 11 2 11 3 11 4

1 Δ Δ Δ Δ
Δ

m x m x m x m xT g e g e g e g e− − − − = + + + 
 , (30) 

where

 

1 2 3 4 5

1 2 3 4 5

1 2 3 4

1 2 3 4

31 32 33 34

Δ 0
0
0

Q Q Q Q Q
R R R R R
U U U U
V V

g
V

g g
V

g

= . (31) 

( )Δ  1 , 2,3, 4,5i i =  are obtained by replacing thi  column of (31) with [ ]1 2 0  0  0   trF F− , 

where , ( 1, 2,3, 4,5)  and , ( 1,2,3,4)i i j jQ R i U V j= =  are given in the Appendix III. 
The transformed components of stress and temperature distribution are functions of the 

parameter of Fourier transform x  is of the form ( )3,f xx .To obtain the solution of the 
problem in the physical domain; we invert the Fourier transform by using the method 
described by Press et al. [41]. 

Case 5.1 Normal force acting on the surface  
If 2 0F →  in Eqs. (26)-(30), it corresponds to the resulting expressions for normal force. 
Case 5.2 Thermal source acting on the surface  
If 1 0F →  in Eqs. (26)-(30), yields the resulting expressions for thermal source. 
Particular cases 
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(i) If 1 3 2 2 0b dα γ α γ= = = = = →  in the Eqs. (26)-(30), we obtain the corresponding 
expressions for thermoelastic material with single porosity for thermomechanical 
sources. 

(ii) If 0 0t = , in the Eqs. (26)-(30) yield the corresponding expressions for thermoelastic 
material with double porosity in context of coupled theory of thermoelasticity. 

 
6. Numerical results and discussion 
The material chosen for the purpose of numerical computation is copper, whose physical data 
is given by Sherief and Saleh [42] as: 

10 2 * 3 2 2 1 10 27.76 10 ,  3.831 10 ,  3.86 10 ,Nm C m s K Nmλ µ− − − −= × = × = ×  
* 3 1 1 3 3 3

0 ,3.86 10 ,  0.293 10 ,  8.954 10K Ns K T K Kgmρ− − −= × = × = ×  
5 11.78 10  t Kα − −= × .  

The double porous parameters are taken as: 
10 2 10 2 5 5

2 32.4 10 ,  2.5 10 ,  1.1 10 ,  1.3 10  Nm Nm N Nα α γ α− − − −= × = × = × = ×  
5 2 5 10 2

1 10.16 10 ,  0.12 10  ,  0.1 10Nm b N d Nmγ − − −= × = × = ×  
5 2 12 2 2 10 2

2 10.219 10 ,  0.1456 10 ,  0.9 10  Nm Nm s b Nmγ κ− − − −= × = × = ×  
10 2 12 2 2

1 22.3 10  ,   0.1546 10Nm Nm sα κ− − −= × = × . 
The software MATLAB has been used to find the values of normal stress 33t , tangential 

stress 31,t  equilibrated stresses 3σ , 3χ  and temperature distribution T . The variations of these 
values with respect to distance 1x  have been shown in figures (1)-(8) respectively. In all these 
figures, solid line corresponds to thermal double porous material (TDP) and small dashed line 
corresponds to thermal single porous material (TSP). 

Normal force. Figures 1-4 depicts the variation of normal stress 33t , tangential stress  

31t , equilibrated stress 3σ , temperature distribution T  with respect to distance 1x  due to 
normal force. 

In Figure 1, the behavior and variation of normal stress 33t for TDP and TSP is opposite 
to each other near the application of the source while the behavior is same as moving away 
from the source. It is also noticed that for TDP, the magnitude value of 33t  is higher for 
theregion 0 1x< ≤ , become smaller for the region 1 3x< ≤  than that of TSP and becomes 
almost same for both, in the remaining region.From Figure 2, it is noticed that the values of 
tangential stress 31t are oscillatory in nature for both TDP and TSP. Also, it is found that due 
to porosity effect the magnitude values are higher for TSP in comparison to TDP near the 
application of the source while as moving away from the source application point, the values 
becomes higher for TDP than that of TSP. From Figure 3, it is clear that the behavior of 
equilibrated stress 3σ is oscillatory for both the materials while the amplitude of oscillations is 
more for TDP as compared to that of TSP. The magnitude values of 3σ are larger for TDP as 
compared to TSP for the regions 1 1.8x< < , 4 7.8x< <  whereas an opposite trend is noticed 
in the subsequent regions. 
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From Figure 4, the trend of variation of temperature distribution T  is oscillatory in 
nature for both TDP and TSP. It is noticed that the magnitude values of T are more for TSP 
than that of TDP for the region 0 2x< <  whereas the values are higher for TDP in 
comparison to TSP as 2x ≥ . It is also found thatT attains maxima near the point of 
application of the source for both the materials. 
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Thermal source. Figures 5-8 depict the variation of normal stress 33t , tangential stress 

31t , equilibrated stresses 3σ  and temperature distribution T  with respect to distance 1x  due to 
thermal source. 

From Figure 5, it is noticed that the value of normal stress  33t decreases sharply for
0 1.2x< ≤ , again increases sharply for 1.2 2x< ≤  and then decreases slowly and steadily as

2x > . Due the effect of porosity, the magnitude values of TSP are more in comparison to 
TDP for all x although the trend of variation is similar for both the materials. From Figure 6, 
it is evident that the behavior and variation of tangential stress 31t is oscillatory in nature for 
both TDP and TSP. The magnitude values of 31t  are more for TDP than that of TDP for all the 
values of x due to the effect of porosity. In Figure 7, an oscillatory behavior of variation of 
equilibrated stress 3σ  is noticed for both TDP and TSP. It is found that the amplitude of 
oscillation is maximum at the application point of source and start to decrease as moving 
away from the source. Figure8 shows that the magnitude values of temperature distribution T
are more for TDP as compared to that of TSP due to effect of porosity for all the values of 1x . 
Although the trend and behavior of variation is similar for both the materials for all 1x  while 
the amplitude of oscillation decreases with the increase in value of 1x . 

 
7. Conclusions 
In this paper, the deformation due to moving load in thermoelastic medium with double 
porosity in context of Lord-Shulman theory of thermoelasticity has been investigated. It is 
concluded that analysis of elastodynamics deformation in thermoelastic materials with double 
porosity structure due to moving load is a significant problem of mechanics. The behavior of 
components of stress and temperature distribution in an isotropic homogeneous thermoelastic 
material with double porosity structure has been investigated for thermoelastic interactions 
due to moving load by using Fourier transform technique. All the field quantities are observed 
to be very sensitive towards the porosity parameter. Graphical representation indicated that 
double porosity and single porosity have both the increasing and decreasing effects on the 
numerical values of the physical quantities.  

This type of study is useful due to its application in geophysics and rock mechanics. 
The results obtained in this investigation should prove to be beneficial for the researchers 
working on the theory of thermoelasticity with double porosity structure. The introduction of 
double porous parameter to the thermoelastic medium represents a more realistic model for 
these studies.  
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