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Abstract. Numerical study of crack opening in the solid material of rock formation is presented 
in this article. Initially introduced straight-line crack is widened by increasing internal pressure. 
The crack shape evolution resembles hydraulic fracturing and is considered as a transient 
process. Commercial code LS-DYNA was employed to obtain solutions by three types of 
descriptions, they are compared to the solution obtained in Eulerian description by a program 
based on the finite-volume method and written in Python language. The main features of the 
self-developed code are a direct relation between velocities and strains, and a deriving of the 
aperture through density distribution.  
Keywords: solid mechanics, finite-volume method, numerical simulations, Eulerian 
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1. Introduction 
A variety of formulations exists in the problem of crack opening, the main concepts and 
approaches to solution of problem are presented in the following papers [1-4]. In the present 
article the focus is on numerical two-dimensional modeling of a crack opening by means of 
different descriptions. It is well-known that two approaches are used to describe the kinematics 
of continuum medium – Lagrangian description [5-8] and Eulerian description [9-11]. 
Generally, the Lagrangian description is utilized for solid dynamic deformation calculations. 
But a significant limitation on the applicability of the Lagrangian description is imposed by the 
hypothesis of local topology. The key issue of the hypothesis is the requirement that closely 
located material particles shall remain closely located during any movement. Obviously, this 
condition is not fulfilled in the case of liquids and loose media which behave like liquids. 
Furthermore in some cases, for instance when a plastic flow or discontinuities caused by 
micro-cracks occur within the solid medium, the correct application of a Lagrangian description 
may become difficult. 

The Eulerian description was developed and used during the last two centuries mostly in 
the dynamics of gas and fluid [9,11-13]. As well the Eulerian description is widely employed in 
simulation of slurry multicomponent flow and sedimentation where a granular medium is 
considered, but fewer works deal with modeling of deformable solid [14-21]. Moreover, 
recently this approach was extensively enhanced and began to be used for simulation of 
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medium with rotational degree of freedom [22-29]. 
In the case of the Lagrangian description, the finite element method is employed that 

requires low ratio between finite elements mesh dimensions for convergence and accuracy. In 
the case of Eulerian description, the finite volume method is utilized that allows using a mesh 
with significantly different characteristic dimensions in the same element which is helpful in 
case of hydraulic fracturing simulation where length and height of crack reach tens of meters 
while aperture does not exceed a few millimeters [30,31]. For this simulation the mesh size in 
direction of crack widening should be accordingly equal to an order of millimeters. Choosing 
the mesh with the same characteristic dimensions in two other directions leads to immense 
computational costs. However, from a physical point of view, it seems reasonable to use a 
rather coarse mesh in the direction of the length and height of the crack. Therefore, applying a 
Eulerian description for this problem is interesting not only from a theoretical point of view but 
also has great practical importance. From another side, since the implication of the Lagrangian 
description is also quite suitable for this kind of simulation, it could be considered as a 
benchmark problem and serve as an example and base for a comparative analysis of the 
numerical results obtained by different methods. 

We note that the application of Eulerian description in deformable solid dynamics has 
specific features comparing with employment in fluid dynamics. These distinctions are evoked 
due to the presence of deviatoric part of elastic stress tensor and consequently due to necessity 
in introducing of the strain tensor as a variable. More details see in works [27,32,33]. 

Reviewing commercial software, it was established that the Lagrangian description is 
currently implemented in a large number of engineering software systems. At the same time, 
the Eulerian description is not so widely applied for modeling of processes in a solid body. For 
example, commercial software FLUENT, which is a part of ANSYS, allows only thermal 
simulations in a solid medium. It turned out that the engineering programs ABAQUS and 
LS-DYNA have the widest possibilities for calculations based on Eulerian description. Both of 
them also have arbitrary Lagrangian-Eulerian solver that is most conveniently implemented 
within the framework of the LS-DYNA software package. Thus, in order to unify the process of 
creating computational models, the LS-DYNA program was chosen as a commercial software 
package for the numerical solution of the problem. This commercial software specializes in 
solving highly-nonlinear problems by finite element method with the use of an explicit time 
integration scheme. 

Self-written program on Python partly coincides with general finite-volume numerical 
schemes used in hydrodynamics. As in computational hydrodynamics, the mass and 
momentum balance equations in the integral form are utilized as the main equations. But in case 
of deformable solid seven scalar values are used as the main unknown variables, three of which 
are specified in the centers of elementary cells (density and two projections of velocity), two – 
on the vertical sides (xx and yx components of deformation tensor) and two – on the horizontal 
sides of cell (xy and yy components of deformation tensor). Mass and momentum flow in the 
balance equations are determined on the basis of the velocity direction analysis. As well if the 
velocity in the given elementary cell is directed to the right, the values of deformations on the 
left side of this cell are used, and vice versa. Similar to hydrodynamics scheme, this numerical 
scheme allows calculations with the use of a highly uneven mesh in space. Key features 
distinguishing the program from LS-DYNA code such as nonlinear constitutive equations, are 
discussed in section 2. 

 
2. Problem formulation 
The dynamic process of crack opening caused by the influence of the internal monotonically 
increasing pressure applied to the crack edge is studied. It is presumed that the original crack 
profile is flat and located in a vertical plane. The case of plain strain was reviewed. In other 

Employment of Eulerian, Lagrangian, and arbitrary Lagrangian-Eulerian description for crack opening problem 471



words, the cross-section perpendicular to the crack length was considered, and the crack length 
was assumed to be infinite. The material is presumed to be initially in the undeformed state. The 
crack is a slice where the stresses can only be compressive or zero. In order to simplify the 
problem, it is supposed that further growth of the crack associated with the failure of the 
material is impossible. 

Ideally elastic model of material is implemented for the rock layer, no viscosity or other 
velocity-related properties such as dissipation are implemented in the material model. 

Deformable solid dynamics problem is summarized in the following equations system:   
− mass balance  

δρ
δ𝑡𝑡

+ ρ ∇ ⋅ 𝒗𝒗 = 0, (1) 
where δ/δt is material derivative, ρ is density, v is velocity vector;  

− momentum balance 
∇ ⋅ 𝛕𝛕 + ρ𝒇𝒇 = ρ δ𝒗𝒗

δ𝑡𝑡
, 𝛕𝛕T =  𝛕𝛕, (2) 

where τ is stress tensor, f is external force per unit of mass; 
− velocity and strain definition 

𝒗𝒗 = δ𝒖𝒖
δ𝑡𝑡

, 𝛆𝛆 = ∇𝒖𝒖 + 𝒖𝒖∇
2

, (3) 
where u is dispacement vector, ε is strain tensor; 

− constitutive equation  
𝛕𝛕 = 2µ𝛆𝛆 + λ𝑬𝑬tr(𝛆𝛆), (4) 
where λ and μ are Lame parameters, tr denotes tensor trace, and E is identity tensor.  

The calculation domain is chosen large enough so that the conditions at its external 
boundary do not have a noticeable impact on the processes causing the widening of a crack. 

Main ideas of descriptions implemented for the crack opening problem. Deformable 
solid problem is more convenient to consider in Lagrangian description framework, where it is 
easier to formulate boundary conditions and apply loads. In this framework boundary 
movements do not complicate load imposition, and only domain containing material is 
calculated. If deformations are substantially large, the arbitrary Lagrangian-Eulerian 
description could be implemented to obtain reliable results. However, the pure Eulerian 
description, which is commonly utilized in fluid dynamics, could be as well useful in 
deformable solid problem. For instance, in hydraulic fracturing problem, where several 
components (including fluid and deformable solid) are interacting, the implication of 
Lagrangian framework seems to be more practical. Instead of additional equations prescribed at 
numerous contact surfaces in case of Lagrangian description, only volumetric forces could be 
introduced in Eulerian description. This replacement greatly decreases computational cost. 
Besides that, viscous interaction forces, as well as elastic ones, could be included in the 
simulation. Porous deformable solid is feasible to model through Eulerian description whereas 
in Lagrangian description penetration of fluid into solid could not be explicitly considered. One 
more advantage of Eulerian description is a freer choice of cells aspect ratio. Finite-volume 
method imposes much fewer requirements to that aspect ratio than the finite-elements method, 
this fact is important in the problem of a crack opening where aperture width is a several order 
less than the crack height. But in order to proceed towards multi-component formulation, the 
Eulerian description approach should be justified and thoroughly checked against solution 
obtained by other approaches in case of one component. 

In case of Eulerian description the boundary of the calculation domain consists only of the 
external boundary Γext. Empty space inside the crack belongs to the calculation domain. The 
position of the crack walls is determined through analysis of material density jump. The 
external influence leading to crack opening is modeled by the equivalent volume force ρf in the 
equation of motion (2). In the continuum formulation of the problem this force is related to the 
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pressure p with the equation 
ρ𝒇𝒇 = −𝑝𝑝δ(ξ − 0)𝒏𝒏,  (5) 
where δ(ξ – 0) is Dirac delta-function, ξ is coordinate directed along the normal to the crack 
wall, i.e. in the direction of a single vector n, with ξ = 0 on the crack wall.  

This force is given in the cells adjoining to a slice, and as cells are emptied, force is 
transferred to the next cells. Taking into account the ratio of the crack height and its maximum 
opening, and the corresponding choice of cells sizes, it is assumed that the force simulating 
pressure is directed along the axis x in all cells as shown in Fig. 1. The volumetric force module 
ρf is evaluated from the pressure value p through the relation 
|ρ𝒇𝒇| = 𝑝𝑝/ℎ𝑥𝑥,  (6) 
where hx is the horizontal size of considering cell. 

In case of Lagrangian and arbitrary Eulerian-Lagrangian description the boundary of 
computing domain consists of external boundary Γext and crack walls Γcrack. The pressure p, 
which opens the crack, has the role of a boundary condition that is formulated as 
𝒏𝒏 ⋅ 𝝉𝝉|Γ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = −𝑝𝑝𝒏𝒏,  (7) 
where n is a unit external normal vector to the crack boundary. 

Simulation parameters. The crack height was chosen to be one-third of formation 
height (see Fig. 1). Pressure p, which acts on the edges of the crack, linearly increases and 
reaches maximum value 5 MPa at time point 1 second, further in time pressure remains 
unchanged until the end of the calculation. 

Following parameters are used for the formation material model:   
− density value equals to 2500 kg/m3;  
− bulk modulus value equals to 18 GPa;  
− Poisson’s coefficient is equal to 0,3. 

 

 
Fig. 1. Geometry of domain and mesh pattern 

 
The computational models for all three methods of solid description were prepared in 

commercial software LS-DYNA. In order to reduce computational time, symmetry has been 
taken into account. Uneven mesh in x-direction was used, in one case cells horizontal size 
varies from 20 mm to 100 meters, in another case more refined mesh that begins from several 
cells with one-millimeter horizontal edge was utilized. In y-direction mesh consists of 21 cells 
with uniform size. In order to obtain proper comparision same spatial mesh as in LS-DYNA 
was utilised in program writen on Python. 

250 m 

120 m 
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No additional damping, viscosity or artificial stabilization were specified in commercial 
software.  

Commercial software and self-developed finite-volume program. Spatial description 
in commercial packets is successfully utilized to describe wave processes in fluids and gases. 
The application of spatial description to the dynamics of solids, contrary to material 
description, is not as widespread and is not implemented in all commercial packets. 

In a dynamics problem of a deformable solid under the impact of short impulse, 
oscillations are expected to occur if no dissipation is introduced. However, in the numerical 
study of crack opening with the implementation of LS-DYNA software package a solution that 
does not show the vibration of the aperture width is obtained even in the case with neither 
material nor global dissipation introduced. 

Сrack growth development is a complicated action that includes sequence of processes 
including the length growth (height growth in this 2D case), which is related to fracture, and 
width growth, which is not necessarily related to fracture. These processes are very different 
regarding their speed. Whereas crack fracture is a rapid process, crack opening could take 
several hours. It is worth noting that commercial packages implementing spatial description 
allow simulation of processes that last no longer than several seconds due to integration step 
limited by the first natural frequency of smallest volume cell that could not be much changed 
when constructing a computational model. 

In case of discreet formulation in spatial description a crack surface situates inside the 
cells, so fluid pressure on the crack wall can not be specified in the same way (directly on crack 
surface) as it is done in the material description. Instead, one of the possible ways of modeling 
crack opening pressure is to specify the volume force acting in certain cells containing the crack 
boundary. The crack surface can migrate relative to the spatial mesh and, if the cells are small 
enough, move outside the cells in which it was initially located. The simulation of volume force 
that changes its location when the boundary of the crack moves to neighbor cells not containing 
the crack earlier is not feasible in LS-DYNA with use of graphical user interface or standard 
keywords listed in manual. 

This study presents a program that implements a new numerical approach based on 
spatial description. The approach overcomes described above solid dynamics issues appeared 
in LS-DYNA. Comparison of the results obtained by the commercial package and by the 
developed program was made for a coarse mesh, in this case the crack does not spread beyond 
the cells containing crack at the beginning. In contrast with LS-DYNA, Python program returns 
the oscillatory process of crack opening after external loading became constant. The period of 
oscillatory process time was chosen long enough to obtain the asymptotic value of crack 
aperture, so it could be compared with LS-DYNA results. 

The novelty of modeling with the help of the developed program consists of following 
key features: 

− Since in spatial description the crack surface could be situated inside the cells, it is 
proposed to introduce volumetric force acting in the cells containing the crack, this 
proposal is implemented in the developed program. The force magnitude is related to 
pressure by the equation (6). Unlike the commercial package, the Python program uses 
a new calculation algorithm in which the volume force moves along the cells together 
with the crack surface. In a discrete formulation, the cell containing the crack surface is 
determined by comparing the density in cells with a value of 1% of the initial density. 
The crack opens horizontally. The cells are examined in the direction of crack opening, 
starting from the initial slice and heading to the border of the calculation area. 
In addition, the volumetric force ρf in the developed program is also applied to the cells 
that share nodes with cells containing the crack. The volume force in the cell where the 
crack surface is currently located diminishes as the density in the cell decreases, passing 

474 E.A. Ivanova, D.V. Matyas, M.D. Stepanov



to the neighboring cell. Ratios of values of volume force in the considered cell and in the 
following one are determined by the ratio of densities in these two cells as follows 
(formulas are given for the case of positive horizontal component of velocity in 
considered cells): 
𝑓𝑓𝑖𝑖 = 𝑝𝑝 

ℎ𝑥𝑥
𝑖𝑖 ρ𝑖𝑖+1 

,       𝑓𝑓𝑖𝑖+1 = 𝑝𝑝  
ℎ𝑥𝑥

𝑖𝑖+1 
 𝜌𝜌𝑖𝑖+1−𝜌𝜌𝑖𝑖

 �𝜌𝜌𝑖𝑖+1�2 , (8) 

where the upper index indicates the horizontal number of the cell. 
Sharing of the volume force between i and i+1 cells allows smooth redistribution of the 
volume force that helps to avoid numerical difficulties when crack surface moves from i 
cell to i+1 cell. 

− In fluid dynamics, the system of equations describing continua motion contains two 
momentum and mass balance equations, which are partial differential equations, and 
one algebraic equation of state that relates pressure and density. In the case of a 
deformable solid, shear stiffness makes the density and pressure relationship 
inapplicable; instead, the constitutive relationship between stress and strain is defined. 
In the material description, strains are defined through displacements gradient. In the 
spatial description, one could formally follow this logic and calculate the gradient of the 
displacements obtained from velocity field utilizing following differential equation: 
𝛿𝛿𝒖𝒖(𝒓𝒓, 𝑡𝑡)

𝛿𝛿𝛿𝛿
= 𝐕𝐕(𝒓𝒓, 𝑡𝑡). (9) 

However, this does not reveal the physical meaning of displacements in the spatial 
description. It is difficult to comprehend the physical meaning of displacements, and 
thus it is complicated to assign the boundary conditions for them. Instead, this paper 
proposes a new numerical approach employing introduced deformations g that are 
calculated directly from the velocity field with the help of following differential 
equation: 
𝛿𝛿𝐠𝐠
𝛿𝛿𝛿𝛿

= −(∇𝐕𝐕) ∙ 𝐠𝐠. (10) 

The internal energy can be expressed through the tensor g and its invariants, therefore it 
is possible to obtain an algebraic expression that bonds g with the stress tensor and 
completes the system of equations. Thus, due to the absence of displacements as the 
main variables, there is no need to assign the boundary conditions for them. 

− As shown above displacements can be formally calculated in cells containing the crack. 
Component of displacement ux is not equivalent to the crack aperture because the initial 
position defined by formula (9) of the material particles located currently at the crack 
surface does not coincide with the position of the crack surface at the initial moment of 
calculation. Thus the issue arises how to determine the crack aperture in the spatial 
description. In case of a fine spatial grid, the crack aperture can be tracked 
approximately by the number of empty cells. For a more accurate assessment of crack 
aperture, which is particularly relevant for a coarse mesh and fast calculations, a new 
approach of determining crack aperture is proposed. It is based on the analysis of the 
density distribution in the calculation domain. In order to determine the exact crack 
aperture, the following formula is used. First addend represents the width of empty 
cells, the second addend accounts for the position of the crack wall within the cell 
containing it: 

𝑎𝑎(𝑡𝑡) = � ℎ𝑥𝑥
𝑖𝑖

𝑚𝑚

𝑖𝑖=1

+ ℎ𝑥𝑥
𝑖𝑖+1 �1 −

ρ𝑖𝑖+1

ρmax
𝑖𝑖+1 �, (11) 

where m is empty cells number in considered horizontal row, ρmax is the maximum 
recorded at previous steps density in the cell currently containing crack wall. 
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− Next, the issue of relations between stresses and deformations in spatial description is 
surveyed. For convenience, the volume strain I3(g) = Det g and shear strain expressed 
as an auxiliary strain measure Λ = I3-2/3(g) g·gT are introduced. Scalar invariants of the 
strain measure are defined as I1 = tr Λ, I2 = Λ·· Λ. If spatial description is used, material 
may obviously completely leave some cells of calculation domain, this process 
corresponds to large deformations. The absence of density in these volumes, what is 
equivalent to I3(g) = 0, means that there are zero stresses τ in them. Therefore, for an 
ideally elastic solid in the developed program nonlinear equations linking stresses and 
strains are proposed: 

𝛕𝛕 = −𝐴𝐴1𝐼𝐼3

8
3(𝐼𝐼1𝑬𝑬 + 2𝚲𝚲) − 𝐴𝐴1𝐼𝐼3

10
3 (𝐼𝐼2𝑬𝑬 + 4𝚲𝚲𝟐𝟐) − 𝐴𝐴3𝐼𝐼3

2𝑬𝑬, (12) 

where constants A1, A2, A3 expresses through bulk modulus K and shear modulus G as: 

𝐴𝐴1 =
6K − 7G

6
, 𝐴𝐴2 =

5K − 3G
12

,   𝐴𝐴3 =
35G − 39K

12
.  (13) 

As the density simultaneously with I3(g ) tends to zero, all components of the stress 
tensor τ vanish. Constants A1, A2, A3 are selected in such manner that at small 
deformations equation (12) asymptotically tends to the well-known relations of the 
linear theory of elasticity. It should be emphasized that this nonlinearity is not 
associated with the physical characteristics of the material but with the specificity of the 
Eulerian description. 

The implicit integration scheme was programmed in Python, and the "newton_krylov" 
package from the "scipy.optimize" library was used to solve the system of nonlinear algebraic 
equations. To facilitate convergence, speed, and accuracy, dimensionless variables and 
parameters were introduced in the program. 

Note that in the case of Eulerian description it is possible to consider half of the domain 
due to symmetry of the problem. However, it is interesting not only to solve a particular 
problem but to develop a general approach that could be easily extended to the case of a large 
number of cracks distributed arbitrarily throughout the entire volume of the domain. Therefore, 
despite the symmetry of the problem, the whole calculation domain is included in the 
simulations by self-developed code. 
 
3. Results and discussion 

Comparison. The main idea of this study is to verify that different approaches in 
LS-DYNA give coincided results and, basing on this verification, to compare Python and 
LS-DYNA results found employing Eulerian description. Since the main variables in Python 
code are density, velocities, and strains but not displacements, comparison of apertures sizes 
seems to be most suitable. Besides that, the stress distributions, which could be important if the 
case of material fracture was considered, are compared as another way to prove resemblance of 
solutions. But firstly displacement and density distributions are presented to depict the general 
disposition of deformation. 

The equations system (1) – (4) applied in the finite-element method has displacements as 
main variables, therefore, in Lagrangian description displacements distribution is obtained 
straightforwardly. Displacements presented in Fig. 2 are obtained by Lagrangian description in 
LS-DYNA with almost quadrate-shaped mesh described in section 2. Results in this section, 
unless specified, are demonstrated at time value 1 second. 
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Fig. 2. Displacement in x-direciton obtained by LS-DYNA through Lagrangian description 
 

Physically it is not obvious what displacements mean in Eulerian description, where some 
parts of the domain could become empty. Consequently, it is more understandable to look at 
density, its distributions obtained by Python solver in two cases of elongated meshes – fine and 
coarse – are demonstrated in Fig. 3. Only left half of the computational domain is presented. 
 

 
Fig. 3. Density distribution obtained by self-developed code, on the left side is shown solution for 
cells with 1 mm horizontal edge, on the right side is shown solution for cells with 20 mm horizontal 

edge 
 

It should be mentioned that presented distribution does not show the real density field 
because of mesh nonuniformity, in Fig. 3 every cell occupies equal area whereas in actual 
domain cells around crack have a very short edge in x-direction in contrast with large edges of 
cells near the boundary. 

Stress concentrations at tips of crack are highly dependent on mesh resolution and 
deserve separate analysis, therefore in the sake of simplicity the horizontal cross-section of the 
computational region in the middle of crack was chosen, this cross-section seems to be a good 
path for the representation of general stress distribution in different approaches. The 
comparison is focused on the normal stresses in x-direction perpendicular to crack slice. 

Results obtained by three formulations in LS-DYNA with quadrate-shaped mesh are 
presented in Fiq. 4. Eulerian solution is denoted as MME, Lagrangian one is termed as LAG, 
arbitrary Lagrangian-Eulerian formulation has notation ALE. Profiles for Eulerian and 
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Lagrangian solution almost coincide and can not be distinguished visually. 
 

 
Fig. 4. Stress distributions obtained by three formulations in LS-DYNA 

 
Profiles of stresses are in good agreement for all three methods, it means that Eulerian 

approach is reliable and could be used to justify self-developed code in case of more elongated 
mesh. 

Stress distributions obtained by Eulerian formulation in Python with elongated mesh and 
in LS-DYNA with same mesh are presented in Fig. 5. As it was mentioned, considered mesh 
has around crack shortest 20 mm edges in x-direction whereas in y-direction it has 
few-meters-length edges.  

 

 
Fig. 5. Stress distributions obtained by Eulerian formulation in LS-DYNA and self-developed 

code 
 

General resemblance is observed though much more refinement of mesh is needed to 
obtain good convergence between LS-DYNA and self-developed code results. 
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Subsequently as the main indicator of a correct solution and most important result of 
calculation the aperture width is considered. Aperture sizes (actually, half of the aperture width) 
were compared and their dependence on time for three formulations in LS-DYNA with 
quadrate-shaped mesh is shown in Fig. 6. Two points in space are considered for aperture 
profiles, one in middle of crack and another one at quarter of the crack height. 

 

 
Fig. 6. The aperture of crack at two points of crack height obtained by different methods in 

LS-DYNA 
 

Since presented figure shows an almost linear dependence of opening on time, it could be 
concluded that in LS-DYNA inertia does not play an important role in the opening of crack 
when applying loads with speed around 5 MPa/s. Besides that, good agreement between 
different approaches is confirmed. Consequently, the Eulerian approach is a reliable one, and it 
is feasible to consider the problem with more slender cells using this method. 

For elongated coarse mesh described above the solutions obtained in Eulerian description 
by LS-DYNA and Python code are compared in Fig. 7. In Python self-developed code aperture 
is determined trough the analysis of rock density values in elementary cells which are in close 
proximity to the crack slice. 

 
Fig. 7. Comparison of solutions found in Eulerian description by LS-DYNA and Python code 
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Despite the final values are in some agreement, a self-developed code solution shows 
significant nonlinearity, and it could be presumed that further behavior of aperture size would 
not converge in a short time. 

As a next step, the mesh convergence of Python code is studied, solution on refined mesh 
starting with 1 mm along x-direction is compared to the previous solution on mesh with 20 mm 
cells. Comparison is presented in Fig. 8.  

 
Fig. 8. Mesh convergence for self-developed code 

 
The shorter horizontal edges are chosen and the more slender mesh is studied, the higher 

pace of crack opening is observed. Note that in case of mesh starting from 1 mm along 
x-direction several cells became empty. 

To find the behavior of solution after the load has been fixed at maximum value, which 
happens at 1 second time point, the solutions by LS-DYNA and Python code with coarse 
elongated mesh for time range 5 seconds were calculated. Aperture size is shown in Fig. 9. One 
point in space is considered in the middle of crack height. Previously considered material in 
Python self-developed code does not possess any viscosity, an additional profile was found in 
case of material for which this property inheres. 

Estimated aperture, to which Python profiles asymptotically tends, is slightly larger than 
aperture obtained by LS-DYNA. 

 
Fig. 9. Aperture size for time range 5 seconds, the external load has been fixed at time value 
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Conclusions. The presented analysis shows that stresses and aperture width obtained by 
different approaches in LS-DYNA do coincide accurately enough to rely on Eulerian approach 
and consider it as the base in the comparison between LS-DYNA and self-developed code. 
From one side, carried calculations have confirmed that the solution obtained by Eulerian 
approach demands more computing resources and time for a similar mesh. From other side, in 
such problems like crack opening it is necessary to have small mesh size in direction 
perpendicular to crack, model prepared for Lagrangian description should have cells dimension 
in parallel to crack direction with the same order as dimension in perpendicular to crack 
direction, but model prepared for Eulerian description could have elongated cells with a large 
ratio between parallel to crack and perpendicular to crack sizes that is more convenient and 
saves computational time. 

The novelty of numerical approach based on spatial description and implemented in 
self-developed Python program is expressed by followings: 

− In order to model pressure opening the crack, it is proposed to introduce in numerical 
algorithm the volumetric force acting in the cells containing the crack. Besides that, the 
volume force moves along the cells together with the crack surface and is partly applied 
to the cells which neighbors contains the crack. This force assignment is included in the 
algorithm in order to avoid numerical difficulties during a transfer of crack wall from 
one cell to another and for smooth redistribution of volume force. 

− Since it is difficult to comprehend the physical meaning of displacements in spatial 
description, it is preferably to avoid assignment of boundary conditions for them. In 
order to do that, for the first time in numerical algorithm differential equations linking 
directly velocity vector projections and strain tensor components are employed. This 
approach allows displacements to be excluded from consideration. 

− The new method has been proposed to accurately assess crack aperture. The ratio of the 
current density to the maximum recorded density in a given cell for the whole time of 
calculation is multiplied by the width of the cell in the horizontal direction to obtain the 
position of the crack surface inside the cell. Together with the width of the empty cells, 
the crack wall position inside the current cell shows the crack opening. 

− The absence of material in the cells should correspond to zero stresses, so for 
implementation in the Python program new nonlinear equations that connect stresses 
with deformations are suggested. The introduced relations asymptotically tend to the 
well-known equations of linear elasticity theory at small deformations. 

In summary, normal stresses and aperture size obtained by Eulerian description in 
LS-DYNA and Python do not coincide accurately, however, the general resemblance is notable. 
The main distinction is the nonlinear dependence between load and crack opening in case of 
Python code whereas in LS-DYNA’s results the dependence is almost linear. In contrast with 
LS-DYNA results, self-developed Python program correctly simulates the transfer of the 
external forces to kinetic energy and returns results where oscillations of crack aperture size are 
observed after load becomes constant in time. Crack opening converges toward static value the 
faster the more dissipation or viscosity are introduced in self-developed numerical scheme. The 
asymptotic value of aperture obtained by Python program and the value found by LS-Dyna 
code coincide accurately enough. 

Also by performing calculations, it was established that the elapsed time spent by 
developed program is several times less than the runtime needed in commercial package. 

Future development and challenges. For lower rate of the applied load change the 
dynamic terms in momentum balance would have an insignificant impact on the process. It is 
obvious that the solution of the problem in the quasi-static formulation allows the simulations 
of any large duration processes. If the right side in equation (2) is omitted, which means the 
absence of dynamic terms, the time spent on calculation would not depend on the duration of 
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the process.  The developed program allows simulation of the quasi-static process without 
limitation on its duration. This simulation is planned for future investigation of self-developed 
Python code. 

As a future self-developed program extension the porous model could be implemented in 
solid material. This would allow introduction of viscous forces between solid and fluid continua 
that prevent unresistant fluid flow away from crack after initial penetration into solid happens. 
As well porous model implies the presence of pore pressure in a solid medium that helps to 
predict crack opening more accurately. 

Besides that one more aim of investigation could be construction in Python code of a 
multi-component model where proppant and oil alongside with fracking fluid and rock would 
be analyzed. Another interesting topic would be to study stress distribution around crack tips to 
predict whether crack extends. 
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