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Abstract. In this contribution we have considered the main items of the history of ideas on 
the structure of condensed solid matter. They are divided into two principal groups; one is 
based on discreteness (numbers, atoms), the other on continuity (geometrical figures). The 
evolution of these ideas has led to such notion as crystals, long-range and short-range order, 
continuous and discrete space, quasicrystals, types of disorder, amorphous structure. In its 
turn the new notions generated new theories, such as group theory, topology, etc. Significant 
attention was given to molecular dynamics, a new powerful instrument for solution of many 
problems connected with the structure of disordered phases. Leaning on a molecular 
dynamics, we have developed the theory of deformation and fracture for amorphous 
materials. 
 
 
1. Introduction: numbers everywhere  
Numbers. According to the Russian Mathematical Encyclopedic Dictionary [1], “Number is 
one of the most important mathematical notions. Coming into being in a simplest form in a 
primitive society, the notion ‘number’ was changing over many centuries enriching its 
essence. The science of numbers is called arithmetic (Gr. αριθμητικη – skill of counting). In 
the course of development of arithmetic there appears a need to study properties of numbers 
as such, to seek out regularities in their interrelations caused by arithmetic operations.” 

Geometry. According to the Russian Mathematical Encyclopedic Dictionary [1], 
“Geometry (Gr. γεω-μετρια–land measuring, from γη– earth and μετρεω–measure) is a part of 
mathematics which studies spatial relations and shapes as well as other relations and shapes 
similar to special in their structure.  

Pythagoras (Πυθαγορης, ~570–500 BC) used numbers as the basis for construction of 
the World [2]. “Prototypes and proto-bases baffle all clear description because it is difficult to 
comprehend their full meanings and to express clearly by words, that’s why for teaching 
clarity sake one has to use numbers. All the things are numbers, the wisest is a number, and 
God is the number of numbers. Everything does not originate from a number, but in 
conformity with a number, since a number is a primary ordering, and in connection with it in 
countable objects, there ordered the first, the second and so on. All the nature phenomena 
should be explained with the help of numbers.”  

Numbers and symbols. According to Pythagoras, all the numbers are divided into 
categories and have a symbolic meaning. Number one is the universal beginning, since 
without a unity there is no any number. Number two is the beginning of an opposite and 
symbolizes a phenomenon polarity, e.g., light and darkness, good and evil, life and death, 
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right and left, even and odd, etc. Number three is the symbol of nature; it is the most prefect 
number, because it has the beginning, the middle and the end. The sum of these number gives  

 
1+2+3=6, 

 
so the number six is a divine number. 

The symbol of constancy is number nine, because all the numbers which are multiples 
of nine have sum of ciphers equal to nine, i.e. 

 
18→1+8=9,   27→2+7=9,   36→3+6=9. 
 

A perfective number is equal to the sum of its own divisors, e.g. 
 

6=1+2+3,  28=1=2+4+7+14. 
 

Numbers and geometry. Pythagoreans distinguished triangular, quadratic and 
pentagonal numbers. The triangular numbers show the number of balls put in the form of a 
triangle, the quadratic numbers – in the form of a square, and so on, i.e. 

 
1, 3, 6, 10, 15, 21, … 1, 4, 9, 16, 25, 36, … 1, 5, 12, 22, 35, 51, … 
 

Pythagoreans considered also figurate numbers, analogous to triangular numbers, but in 
the three-dimensional space, so called pyramidal numbers. They show the number of balls 
which can form a regular pyramid, i.e. 
 
1, 4, 10, 20, 35, 56, … 
 

Pythagoreans reduced the space to numbers. A point has one dimension and it 
corresponds to number one. A line has two dimensions, because it can be drawn through two 
points. A plane has three dimensions, a volume has four. By summing all the plane figures 
one obtains  

 
1+2+3=6. 
 
By summing all the figures, corresponding to the geometrical shapes one obtains  
 
1+2+3+4=10. 
 
Again we see the divine nature of number six. However, there is the super-divine number, 36, 
because 
 
36=1+2+3+4+5+6+7+8,   36=1·1·1+2·2·2+3·3·3. 

 
Numbers and harmony. According to the Longman Dictionary of English Language and 

Culture [3], harmony is 1) notes of music combined together in a pleasant sounding way; 2) a 
state of complete agreement (in feelings, ideas, etc.); 3) the pleasant effect made by parts 
being combined into a whole. A similar definition one can find in the Russian Dictionary of 
Foreign Words [4], besides it shows the origin of the word: harmony (Gr. αρμονια–
consistency, consonance, concord). The Russian New Illustrated Encyclopedic Dictionary 
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enlarges this notion adding that in the ancient Greek philosophy harmony means the ordering 
of cosmos in contrary to chaos.  

After such rather long definition, let us return to Pythagoreans. They discovered the 
following musical rule. In order to produce music in a pleasant harmonic way, a lyre must 
have the strings which lengths are in the ratios 1:2, 2:3, 3:4. So Pythagoreans combined the 
first four number into a tetrad. Their sum is  

 
1+2+3+4=10. 
 
And just the same number one has obtained by summing the numbers which correspond to the 
geometrical forms of different dimensions. Besides the sum contains the equal quantity of 
even and odd numbers. It means that the number ten is an ideal number, because this number 
expresses the space, musical and structural harmony of the World and therefore symbolizes 
the Universe. For this reason the sky must contain ten planets, including the Sun and the 
Moon, for which Pythagoreans introduced ten mobile spheres. The distances between the 
spheres must obey simple number relations. Rotating around the central Fire, the planets 
produce noiseless harmonic sounds creating the music of spheres. At that time only six 
planets were known, so Pythagoreans added a new sky body, the Anti-Earth. Later on 
Alexandrian mathematician and astronomer Αρισταρχος (the close of the 4th century–the first 
half of the 3rd century BC) excluded the central Fire and the Anti-Earth, placed the Sun in the 
center of Universe thereby creating the first heliocentric model of the Sun system. 

Numbers rule our life. Some numbers tightly connected with definite sides of our life 
and nature. Their changing leads to fatal consequences. Consider some examples. 

One: one king, one ruler, one president. Any increasing produces instability of the 
corresponding system and, as a consequence, there appear wars, revolutions, distempers etc. 

Two: two eyes, dual highway with two-way traffic, etc. Decreasing leads always to 
disablement and frequently to road accidents. 

Four: north-south-east-west, spring-summer-fall-winter. Nobody is able to change this 
number.  

Six: types of usual movement: right-left-forward-reverse-upward- downward. It is 
possible to decrease, but impossible to increase. 

It is worth noting that even in the modern life we deal sometimes with a whole system 
of numbers which conserved their symbolic sense. The cards used in card games come in two 
red suits, hearts and diamonds; and two black ones, clubs and spades; each suit has nine cards; 
the pack of cards contains usually thirty-six cards. Many people believe that the cards can tell 
fortunes. 
 
2. Introduction: geometry everywhere  
Geometry and elements. Mathematics is defined as the science of numbers and of the structure 
and measurement of shapes [1-5]. The term originates from the Greek word μαθημα 
[knowledge, science]. Just the same meaning has the word μαθησις, initially concerning to the 
knowledge obtained on the basis of clear thinking contrary to the knowledge received as a 
result of experience. “Study of mathematics approaches us to the immortal Gods” said Plato 
(Πλατων, 427–347 BC). In the antiquity, mathematics consisted of arithmetic and geometry. 
Above all ancient Greeks appreciated geometry. The entrance of the house, where Plato lived 
and taught, bore the inscription: “No-geometer does not come in.”  

Ancient Greeks believed that there were four substances (elements) earth, water, air, 
and fire from which everything material was made [2].  

According to Ηρακλειτος (~544–483 BC) the elements transform into each other in the 
following manner. The downward way means changing as a result of condensation 
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fire→air→water→earth. 

 
The upward way means changing as a result of rarefaction in the opposite direction 
 

earth→ water→air→fire.  
 

The reason of transformation is a “fire measure.” 
Plato gave to these processes and elements geometric sense and forms. There are only 

five types of regular polyhedrons, all the faces of which being regular polygons; namely, 
tetrahedron, octahedron, icosahedron, cube, and dodecahedron. They are spoken of as Plato’s 
bodies (Fig. 1). “The most movable body, according its nature and due to necessity, such one 
which has the least number of faces; besides it is the lightest because of it has the least 
number of initial parts. For this reason the form of a pyramid is a symbol and an element of 
fire.” It should be mentioned that the Greek word πιραμις (pyramid) originates from the word 
πιρα ( 

“The second in birth order we name air, and we allot the middle body, an octahedron, 
for it. The largest body, an icosahedron, we allot for water. To earth we give the shape of a 
cube, because it is the most immovable out of four types and in the least degree is suitable to 
body transformation; that is why it must have the most stable basis. Demiurge (Δημουργος–
creator) designated a dodecahedron for the Universe when decorating it.” Later Plato 
confronted a dodecahedron with ether.  

Aristotle (Αριστοτελης, 384–322 BC) considered that the Nature is twofold; it is a form 
and it is a matter, the form being leading and more active. We see that Plato connected the 
form with geometry.  
 

 
Fig. 1. Plato bodies.  

tetrahedron (fire)   octahedron (air)  cube (earth) 

icosahedron (water)   dodecahedron (ether) 
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Geometry and Universe. Johann Kepler (1571–1630) shared Pythagorean conviction: 
“Everything does not originate from a number, but in conformity with a number.” He tried to 
find “the numerical harmony of sky spheres” and did it [6]. According to his geometric model 
of the Universe, Mercury sphere, the nearest to the Sun, is inscribed into an octahedron. In its 
turn, the octahedron is inscribed into the next sphere, Venus sphere. This sphere is inscribed 
into an icosahedron; around it, Earth sphere is located. Inscribing it into a dodecahedron, one 
obtains Mars sphere. Inscribing the latter into a tetrahedron, we come to Jupiter sphere. 
Putting it into a cube, we come to Saturn sphere. Therefore, we have five Plato bodies and six 
sky spheres which correspond to the six planets known at that time. The model gives the right 
quantitative relations between the radii of the planet orbits. It was published in the book under 
the name “Prodromos dissertationum cosmographicarum seu Mysterium cosmographicum” 
(Harbinger reasoning cosmographical or Cosmography mystery) in 1597. However, the most 
known achievement by Kepler is Kepler laws (1609), in particular his third law which 
connects the time of planet circulation with the planet distance from the Sun. 

After these two introductions, pass on the structure of condensed solid matter. We did 
such rather long introductions with the purpose to show that numbers, geometry and structure 
are tightly connected with each other. However if to begin discussing structure of solids 
straight off, it will be difficult to understand why one or another type of model is used in 
modern science. Sometimes they seem rather artificial. In reality, “Multiform kinds of Greek 
philosophy have in embryo almost all the latest types of Weltanschauung. For this reason 
theoretical natural science is compelled to return to Greeks” (Friedrich Engels, 1820–1895). 
 
3. Crystals 

Principle of close packing. The majority of solids, which mankind confronted in ancient 
times with, are crystals. At first, the word crystal denoted only ice (Gr. κρισταλλοζ – ice), 
then rock crystal, because the Ancients believed that ice transforms to rock crystal in 
mountains under the action of the cold. In the XVII century, the scientists tried to explain the 
shape of crystals on the basis of the principle of close packing of spherical particles (Johann 
Kepler, 1611; Robert Hooke, 1685; Christian Huygens, 1690). Being a faithful follower of 
Pythagoreans, Kepler correlated the crystals with the Pythagorean pyramidal numbers.  

His reasoning is as follows. Take a group of three contacting balls. Placing one more 
ball atop the group, one obtains a pyramid. If this pyramid is placed atop the triangle of six 
contacting balls, the pyramid form does not change. Let us increase successively the number 
of balls in the triangular basis, taking the group of 10 balls, then 15 balls and so on. The 
pyramid will grow holding the shape (Fig. 2). Inside the pyramid, each ball is in a contact 
with twelve other balls (its neighbors), at that six neighboring balls lie in the same plane, three 
neighboring balls lie in the plane above, and three neighboring balls below this plane. Using 
this line of reasoning, Kepler showed that the shape of a forming crystal can differ from the 
shapes of its constituent parts. Besides, Kepler has formulated the principle of close packing. 
 

 
 

Fig. 2. Kepler’s pyramids. 
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Atomic structure of crystals. The principle of close packing conserves its significance 
even today. Really, investigating the properties of condensed state, every so often an atom is 
modeled by a ball having diameter b. As a result, the real potential of interatomic interaction 
is replaced by the solid sphere potential  

 









bR,0

bR,
)R(U    . 

 
The replacement of atoms by balls allows solve a whole series of tasks by pure geometry. For 
example, let us superimpose the ball layers one after another, as Kepler did. Then one obtains 
either the hexagonal or face-centered cubic structure depending on whether the arrangement 
order repeats every two or three layers (Fig. 3). Violation of the arrangement order creates 
stacking faults.  

Take as a basis the group of four balls, each ball touching two neighbors. Putting one 
more ball atop the group, one obtains a pyramid, which base is a regular quadrangle. 
Increasing the basis size , we obtain the pyramid with the body-centered structure. This 
structure can be thought of as two simple cubic lattices inserted into each other (Fig. 4a). The 
structures considered are named h.c.p. (hexagonal close-packed), f.c.c. (face-centered cubic) 
and b.c.c. (body-centered cubic) structures. They are typical for metals and solid solution 
alloys.  

Let us complicate the task. Suppose we have two-type balls which differ, for example, 
in color. Take as a basis the group of three balls of the same color. Build Kepler’s pyramid in 
such a way as to create a two-layer periodicity. Then we obtain the structure in which it is 
possible to isolate a primitive cube of two tetrahedra inserted into each other, each tetrahedron 
having the balls of the same color (Fig. 4b). Such structure is typical for alkali-haloid 
compounds (ionic crystals A1B7), the balls of different colors corresponding to the ions of 
different signs. The f.c.c. structure obtained is called the structure of NaCl type.  
 

 
 

Fig. 3. Hexagonal close packing (on the left) and face-centered cubic lattice (on the right). 
 

 
 

Fig. 4. Body-centered cubic structure (a); tetrahedra of NaCl type structure (b). 
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If the pyramid basis has four balls of one color, then the two-layer periodicity of 
different colors corresponds to the structure of CsCl type. It is the b.c.c. structure which 
consists of two simple cubic structures inserted into each other, each structure having the ions 
of the same sign (Fig. 4a). More complex structures can be constructed, if we have three-type 
balls.  

Electronic configuration of ions and the nearest to them atoms of inert gases is the same 
and has a spherical symmetry. Generally speaking, the distance between nearest neighbors in 
ionic crystals is not equal to the sum of the radii of different-sign ions, e.g. for sodium 
chloride we have 

 
nm281.0bnm276.0181.0095.0)Cl(r)Na(r   . 

 
However, the difference is not large. That is why the solid ball model is a good 
approximation.  

Consider the f.c.c. structure constructed from the balls having the same radius r. The 
structure contains “holes” or “interstices” between the balls. They are of two types: octahedral 
and tetrahedral ones (Fig. 5). The octahedral holes can contain a sphere of radius 0.41 r; the 
tetrahedral holes can accommodate spheres of radius 0.225 r.  

Suppose that the f.c.c. structure consists of chlorine ions and all the octahedral holes are 
occupied by sodium ions. Then we obtain again the structure of NaCl type, with 
 

.41.051.0181.0/095.0)Cl(r/)Na(r 
 

 
It means that the large ions, in our case chlorine ions, do not touch each other.  

 

 
Consider the tetrahedral holes of the f.c.c. structure (Fig. 5b). Inside the cube shown, 

eight holes also form a cube. Fill up by the same balls only four holes in such a way as to 
obtain a regular tetrahedron (Fig. 6a). To ensure that the new balls are able to find room in the 
holes, we need to reduce the radius r of the balls to the value r61.02/)r225.0r(  . At the 
same time the relative volume of all the balls decreases from 0.74 (initial cube with empty 
holes) to 0.34 (new porous cube). Natural and synthetic crystal of carbon has the structure 
obtained, so it was named the diamond structure. The length of the cube edge (lattice 
parameter) for a diamond crystal is equal to 0.357 nm. In addition to carbon, silicon, 
germanium and grey tin have the diamond structure, but their lattice parameter is significantly 
larger, 0.543, 0.565, 0.646 nm, respectively.  

Let us replace all the internal atoms of the f.c.c. structure shown in Fig. 6a with the 
atoms of another kind, the external atoms being the same as before. Then we obtain the 
blende structure in which some compounds A2B6 and the most of compounds A3B5 
crystallize.  

Fig. 5. Holes in the f.c.c. structure: (a) octahedral, (b) tetrahedral.  

a) b) 
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It should be highly stressed that the loose diamond structure does not mean low 
strength. On contrary, diamond (from Gr. α-δάμας–hard, firm, steadfast) has the maximal 
hardness; on hardness testing by Vickers method, a diamond pyramid is indented by its spike 
into a material studied. In opposite to the f.c.c. structure, where each atom has 12 nearest 
neighbors, each diamond atom has 4 nearest (first) neighbors and 12 next nearest (second) 
ones. However, the distance between the first neighbors is 0.154 nm; the second neighbors are 
at the distance 

 
nm25.0)2/82109(sin154.02 0  . 

 
Just the same distance is between the nearest neighbors in nickel and copper which have the 
f.c.c. structure, the lattice parameters of nickel and copper, 0.352 and 0.361 nm, coinciding 
practically with that of diamond. Synthetic diamond is produced under high pressure. Because 
of this procedure one is inclined to think that diamond resembles the interstitial solid solution 
of its own atoms in the f.c.c. lattice.  

No crystal structures other than perhaps carbides, borides, and nitrides have such 
minimal distance between the nearest neighbors as diamond has. For example, in silicon 
carbide the distance between the nearest neighbors, 0.188 nm, although is larger than in 
diamond, but significantly less than in silicon, 0.235 nm. In essence, these nearest neighbors 
in diamond are ultra–nearest ones (Lat. ultra–beyond limit).  
 
4. Long-range and short-range order 
Bravais lattices. Consider an ideal crystal, in which the arrangement of atoms is specified 
with the help of lattice sites. The sites are given by the set of vectors 

 

332211 nnn aaal  . 

 
Here ni are whole numbers, ai are the noncomplanar base vectors having the least length in 
given directions. The word noncomplanar originates from two Latin words: com–together + 
planum–plane. Three base vectors form a primitive cell. All the crystal can be obtained by the 
translation of the primitive cell (translation is taken from Latin translatio–transfer). In this 

Fig 6. Diamond structure (a); blende structure (b). All the diamond atoms are identical; 
the atoms designated by dark color are located in tetrahedral holes. Dark and light balls of 
blende refer to atoms of different kinds. Lattice parameter of diamond is 0.356 nm, whe-
reas the lattice parameter of ZnS is 0.541 nm. 

a) b) 
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case one might say on the translation invariance of a crystal lattice (in Latin in-variantia 
means dead-level, monotony). In other words, there is a translational long-range order which 
refer to the entire lattice. 

Besides the transfer symmetry, crystals have also rotational symmetry around some 
axes, mirror symmetry of reflection relative some planes and inversion symmetry in some 
direction; inversion (Lat. inversio–permute, rearrange in a different order). All the symmetry 
operations must be compatible with each other. This condition is fulfilled only for five types 
of two-dimensional lattices (Fig. 7) and for fourteen types of three-dimensional ones. These 
lattice types were discovered by August Bravais in 1848, and are referred to by his name. The 
corresponding cells are spoken of as elementary cells (Lat. elementaris–initial). 
 

 
 

Elementary cell. If a crystal consists of one-kind atoms and the elementary cell contains 
only one atom, the crystal lattice is simple. In a general case, the elementary cell contains 
atom of different kinds, so the crystal lattice becomes complex. Consider, for example, 
ferroelectric BaTiO3. In its elementary cubic cell barium atoms are located at the cube apexes, 
titanium atom – at the cube center, oxygen atoms – at the cube faces (Fig. 8a). Take the origin 
of coordinates at the cube center. Then the position of titanium atom will be characterized by 
the vector 00 r , oxygen atoms will have the vectors  1002/a1r , barium atoms – the 

vectors  1112/a2r . In this case the atom arrangement in the elementary cell can be 
given with the help of the sum of δ–functions. 
 

)()()()( 21 rrrrrr   . 
 
If the elementary cell has s different atoms having the coordinates rs, s=1, 2, …, s, then  
 

 
s

s )()( rrr  . 

 
All the crystal can be obtained by the translation of the elementary cell, so the atom 
coordinates become equal to rs+l, therefore the atom arrangement in an ideal crystal takes the 
form 
 

 
l

rlRR
s

s )()(  . 

 
It is a periodic function. Really, we have 

Fig. 7. Two-dimensional Bravais cells: 1) oblique-angled,  
2) rectangular, 3) hexagonal, 4) square, 5) rectangular centered. 

5 

1 

4 3 

2 
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Introduce the new vector of translation lll  . Then 
 

)()()(
s

s RrlRlR
l

  


. 

 
This formula shows that in an ideal crystal there is a strict periodicity over distances which 
are much larger than the size of an elementary cell.  

Just the same approach can be used for an analysis of more complex structures, e.g. 
high-temperature superconductors (Fig. 8b).  
 

 
 

Fig. 8. Arrangement of atoms in elementary cells: 
(a) ferroelectric BaTiO3; (b) high-temperature superconductor YBa2Cu3O7, Tc ~ 91 K. 

 
Continuous and discrete space. An ideal crystal may be thought of as the structure 

which was formed as a result of transformation of continuous space into discrete one. In the 
modern mathematics the space is defined as a set of some objects. These initial objects are 
named elements. They may be geometric figures, functions, states of a physical system, etc. In 
its turn, the set is defined as an aggregate, collection of the elements having a common 
property. “A set is much thought of as a single whole” (Moritz Benedict Cantor, 1829-1920). 
For the set theory it is important to know not the nature of elements, but relations between 
them. 

Fedorov bodies. Take the infinite set, its elements being points (point set). Consider 
convex polyhedrons of this set. A polyhedron is called convex if it is located on one side of 
the plane of any its face. Let these polyhedrons will be the bodies which parallel translation 
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allows fill up all the infinite space in the following way. The polyhedrons do not enter into 
each other and they do not leave holes between them. Then we obtain space partition into 
parallelohedrons. Only five types of convex polyhedrons satisfy to this condition. These 
polyhedrons were discovered by Evgraf Stepanovich Fedorov in 1881 and were named for the 
discover Fedorov bodies (Fig. 9). Most of them were known to ancient Greeks. They are: 

 cube (κυβος – die in the form of a cube), 
 regular hexagonal prism (πρισμα – literally sawed off; Εύκλειδης, 3rd century BC; 

Άρχιμήδης, ~ 287-212 BC),  
 truncated hexagonal prism; two bases and two side faces are hexagons, eight oblique 

faces are rectangles, 
 truncated octahedron (Θεαιτητος, 4th century BC), 
 rhombic dodecahedron (ρομβος – peg-top, Άριστοτέλης, 384-322 BC; δώδεκα-εδρον 

– Θεαιτητος, 4th century BC). 
The number of their faces is граней 6, 8, 12, 14 and 12, respectively. 

In particular case, when all the faces of some Fedorov body are adjacent with the similar 
faces of neighboring bodies, the space partition is normal. Here the centers of Fedorov bodies 
form a lattice, i.e. a set of points having whole coordinates with respect to some Cartesian, not 
necessarily rectangular, system of coordinates. 
 

 
 

Voronoy polyhedrons. Global symmetry of a crystal is adequately taken into account by 
Bravais elementary cell in the form of a parallelepiped. The word parallelepiped originates 
from two Greek words: παρ-αλληλος–going alongside + επι-πεδον–plain, plane. However, it 
is difficult to understand local symmetry with the help of this cell. When one studies local 
symmetry, one examines an object from different sides, e.g. for an atom one defines the 
number of nearest neighbors of the first, second, and so forth coordination sphere. During the 
investigation one looks for the symmetry operations like rotation, reflection, inversion, which 
keep the distinguished atom immobile. In other words, the purpose of investigation is to 
discover the rotational short-range order which refer to this atom.  

Fig. 9. Fedorov bodies. 

        cube                       hexagonal prism       rhombic dodecahedron  

truncated hexagonal prism                          truncated octahedron  
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Let us construct an elementary cell which contains information on this order. Join the 
atom chosen with its nearest neighbors by lines, and then draw the panes through the middles 
of lines normal to these lines. The convex polyhedron obtained, having the chosen atom as a 
center, gives the elementary cell looked for. Consider, for example, two-dimensional 
hexagonal structure known in slang as “triangular lattice”. It has an elementary translational 
cell in the form of a rhomb, whereas its rotational elementary cell is a hexagon (Fig. 10). Both 
cells are primitive since they contain only one atom. The rotational elementary cell better 
illustrates the regular arrangement of atoms in the vicinity of the atom considered, i.e. the 
rotational short-range order.  

In three-dimensional space the rotational elementary cell has the form of polyhedrons. 
Their algorithm was developed by Georgy Feodosievich Voronoy in 1908, and these 
polyhedrons were named for the discoverer, Voronoy polyhedrons. In particular, Voronoy 
polyhedron in the f.c.c. and b.c.c. is a rhombic dodecahedron and a truncated octahedron, 
respectively. It must be emphasized that later on these polyhedrons were introduced in 
physics by E. Wigner and F. Seitz (1933). Probably, gaps in knowledge of foreign languages 
are the cause that in Wild West literature Voronoy polyhedrons is usually referred to as 
Wigner-Seitz cells.  
 
 

 
 
 

Fig. 10. Translational and rotational elementary cells  
of two-dimensional hexagonal structure. 

 
Group theory. We have considered an ideal crystal from two points of view, global and 

local symmetry, and introduced two types of order: long-range and short-range ones. These 
intuitive notions become more exact if one uses group theory, it being one of the parts of 
nonquantitative mathematics. Group theory investigates in the most general form the 
operations which are most often met with in mathematics, e.g. addition and multiplication of 
numbers, multiplication of vectors, symmetry operation and so on. In the general case a 
symmetry operation is defined as a displacement of a body into an equivalent position. What 
does it mean? Suppose that one sees a body before and after a symmetry operation, but not 
during its realization. If one is unable to say whether the symmetry operation is done or no, 
then the positions should be considered to be equivalent. Any crystal admits some symmetry 
operations, so it possible to state something on crystal properties even not solving the 
corresponding equations. With the help of group theory E.C. Fedorov solved the problem of 
classification of regular space systems of points (1890). Historically, it was the first case of 
the application of group theory directly in natural science. 
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The main idea underlies the notion of group is the conception of structure. Groups and 
their graphs are one of the forms of mathematical structure. The basic attributes of any group 
are a set of elements and a binary operation. The binary operation means one-to-one 
correspondence between a pair of elements A and B, and element C, which is named the 
multiplication of element A and B.  

Consider some examples of groups which we will use in the subsequent text. 
1) Set of all rotations of space around an axis. Multiplication of two rotations and β, i.e. 

the turn through angle α and then the turn through angle β, is defined as resulting rotation 
γ=α+β, i.e. the turn through angle α+β. 

2) Set of all rotations of space around any possible axes, passing through a fixed point, 
is defined in a similar way. The set forms a rotation group.  

Subgroup is defied as any subset if it is a group with respect to the same group 
operation. For example, rotations around one and the same axis in the rotation group; 
rotations around the cube center, as a result of which the cube coincides with itself. 

3) Set of all rotations combined with the inversion of space points with respect the 
origin of coordinates gives an entire orthogonal group. If the turns occur through some fixed 
angles, one obtains a point group, which is a subgroup of the entire orthogonal group.  

4) Set of all displacements of space such that the displacement of all points is equal. 
This is a translation group. 

5) Set of all displacements, with the result that the distance between any pairs of points 
remains constant, forms Euclidean group. It contains two important subgroups: translation 
group and entire orthogonal group.  

Suppose that one of the atoms is at the center of coordinates, which is immobile. Other 
atoms are arranged in an arbitrary way in the space. If interaction of atoms is of central 
character, the undirected valencies of any atom form an entire orthogonal group. Correlation 
of interatomic interactions during crystallization orders the chaos of interatomic bonds, which 
symmetry decreases. In fact, the bonds become ordered, since during crystallization takes 
place transition from the entire orthogonal group to one of the point groups. It is this 
transition that justifies the principle of close packing in the model of solid balls, where one 
implicitly takes into consideration the directedness of interatomic bonds. 
 
5. Quasicrystals  
Quasiperiodic lattices and functions. In parallel with crystals there are also solids having no 
translational long-range order, among which are quasiperiodic materials or simply 
quasicrystals. Consider a two-dimensional square lattice. Set off an elementary square. Let us 
displace it along a straight line L at some angle to a symmetry axis, e.g. to x-axis. The moving 
square generates a strip, which incorporates a part of sites of the square lattice (Fig. 11). 
Project these sites onto the line L. In doing so, one obtains a set of points which separate the 
line into two-type line segments, long and short. The set can be described by the expression  

 

s2l1 ananl  , 

 
where ni are whole numbers, al, as is a long and a short segment, respectively. If the tangent of 
the angle between the strip and a symmetry axis is a rational number, the long and short 
segments are linearly dependent, and the set is periodic. If the tangent is irrational, the 
segments are linearly independent, and one obtains a quasiperiodic one-dimensional lattice. 
The projection method considered was suggested N.G. de Bruijn (1981) and later on was 
developed for physical applications.  
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Fig. 11. One-dimensional quasiperiodic lattice as  
a projection of a square lattice onto a line. 

 
The function l, which defines such lattice, is quasiperiodic. The simplest quasiperiodic 

functions are obtained by adding finite number of periodic functions with incommensurable 
periods (Pirs Georgievich Bol, 1893), e.g. 

 

x2sinxsiny  . 
 
They have such property that if to add special constant numbers (almost periods) to their 
argument, the function values approximately recur. Therefore, the quasiperiodic one-
dimensional lattice can be constructed also with the help of the functions, which have such 
property. 

Fibonacci numbers. Consider, for example, Fibonacci numbers. They are defined in the 
following way (Leonardo Pisano Fibonacci, 1228) 

 
,,2,1,0n,1F,0F,FFF 101nn1n     . 

 
This gives the number sequence ,,99,65,34,21,13,8,5,3,2,1,1  or Fibonacci 
series. In this case the ratio of antecedents to succedents gives the sequence of rational 
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then with n  one obtains  
 

w1

1
wlimw n

n 



  i.e.  01ww2  . 

 
Therefore  
 

6180339.02/)15(w  . 
 
One can consider the equality w1w2   as the product of extreme and mean terms of the 
proportion  
 

w

w1

1

w 
 . 

 
In geometry, this corresponds to the division of a segment in such a way as to obtain the ratio 
of the greater part w to the whole length being equal to the ratio of the lesser part 1–w to the 
greater one. Such division is called harmonic division, division in the ratio of extreme to 
mean, divine proportion (Luca Pacioli, De divina proportione, 1509) or, following Leonardo 
da Vinci, golden section. The golden section was very popular in Antique and Renaissance 
architecture, so that the number w is called golden mean. 

Fibonacci numbers characterize a quasiperiodic lattice of a given size. For example, in 
formula 1n1nn FFF   , the first term is the number of long segments, the second is the 

number of short ones. One makes sure of it examining carefully Fig. 11. This allows construct 
a one-dimensional quasiperiodic lattice without using projective geometry. In the infinite 
quasiperiodic lattice, the number of long segments is equal to the golden mean w.  

Penrose lattice. Consider two-dimensional quasiperiodic structures, a vivid example of 
which is Penrose lattice. Its sites are given by the set of the vectors  

 

5544332211 nnnnn eeeeel   ,  

 
where ni are whole numbers, ei is the set of unit vectors directed from the center of a regular 
pentagon to its apexes (star of vectors). The unit vectors satisfy the condition 
 

0
5

1i
i 



e , 

 
so that one has only four linearly independent base vectors. However, as in the case of h.c.p. 
structures, it is conventional, for a better clearness, to use an odd vector. 

Penrose lattice has two structural elements: a broad and a narrow rhombs (Fig. 12). The 
angles of the broad rhomb are equal to 2π/5, 3π/5; the angles of the narrow one are π/5, 4π/5. 
The rhombs contain material atoms and play the role of elementary cells of an ordinary 
crystal. They are conjugated together according to definite rules so that the edges of rhombs 
were parallel to the symmetry axes of a regular pentagon. In doing so, there appears a 
quasiperiodic translational long-range order and simultaneously an orientation long-rage order 
with a symmetry axis of the fifth order which refer to the entire lattice. 
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It should be emphasized that the formula giving the set of vectors defines the position of 
possible sites of a quasicrystal (a space of possible states), but a real lattice contains not all the 
sites, but only a part which is selected according to some rather complex rules, they being 
patented by Penrose as a method of wall-paper coloring (Fig. 13). In this case, the ratio of the 
number of broad rhombs to the number of narrow rhombs in the infinite Penrose lattice is 
equal to the golden mean, as in the infinite one-dimensional lattice. 

 

 

 
Three-dimensional quasicrystals. These quasicrystals, with an orientation long-rage 

order, have the symmetry of an icosahedron (Fig. 1). The latter has 6 fivefold axes, 10 
threefold axes, and 15 twofold axes. The first material of this type, a rapidly solidified 
aluminum alloy with 25–wt% manganese, was obtained by Dan Shechtman in 1982. Then the 
orientation long-rage order was found in binary, ternary and quadruple transition-metal alloys. 
Generally these alloys have the symmetry of an icosahedron, so they are named icosahedral 
phases, although there are alloys having eightfold, tenfold, and even twelvefold axes.  

Many viruses have also the form of an icosahedron (F.H.C. Crick, J.D. Watson, 1956). 
It is worth noting that before discovering the alloy quasicrystals there were known crystals 
with one fivefold axis. Among them there are copper dendrites having been grown under 
special conditions, whisker crystals of iron, nickel, platinum; cobalt crystals, synthetic 
diamonds, and so on (B.G. Bagley, 1965).  

Nucleation and growth. Let us take up formation of quasicrystals. Take a group of five 
balls, each contacting with two others. Placing one more ball atop the group, one obtains a 
pyramid. Following Kepler, let us increase successively the number of balls in the pentagonal 
basis in such a way, as to ensure the pyramid growth keeping its form (Fig. 14). As will 

Fig. 12. Penrose lattices. 

Fig. 13. Penrose wall-papers. 
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readily be observed, in the act of forming there appear close-packed faces and close-packed 
directions (Fig. 15a).  

Let us take 12 identical pyramids. Combine them with each other in such away that they 
have one common apex, two adjoining pyramids have one common face, and five adjoining 
pyramids have a common edge. Then we obtain a dodecahedron (Fig. 15b). Take again 12 
identical pyramids and place each of them on one face of the dodecahedron. Then we obtain 
an icosahedron (Fig. 15c). Thus we can suggest the following model of nucleation and 
growth. At first, a quasicrystal nucleates and growths from one center simultaneously and 
evenly along 12 directions, similar to that of as snowflakes do in the beginning. As a result 
there appears a dodecahedron. Then the uniform growth gives way to a skeletal one, as the 
snowflakes do in the middle. As a result there appears an icosahedron. . 

It is not surprising, since an icosahedron and a dodecahedron can be obtained from each 
other, if the gravity centers of one-of-them faces are accepted as the apexes of another, and 
vice versa. This property is called duality (Lat. dualis–two-fold). In the group theory, the 
point group of an icosahedron Y consists of all the rotations which superpose a pentagonal 
dodecahedron with itself. 

 
 

 
 

 

Discovery. It is intriguing and instructively to note the history of quasicrystal discovery 
following its pioneer (Dan Shechtman, 1997). “Crystallographers, and other scientists who 
studied the structure of matter and its defects, relied on a series of laws and paradigms 
undisputed since von Laue performed his first x-ray-diffraction experiments in 1912. One 
leading paradigm stated that the atomic structure of a crystal is ordered and periodic. 
Explanation of this paradigm, based on common sense, could be summarized as, “It is 
periodic because it is ordered.” Periodicity implies a set of specific rules, among them the 
allowed rotational symmetries – namely one-, two-, three-, four-, and sixfold. Fivefold 
rotational symmetry is excluded.  

Fig. 15. a) Pentagonal pyramid, close-packed directions are distinguished 
with dark color; b) dodecahedron; c) icosahedron. 

a) c) b) 

Fig. 14. Growth of a pentagonal pyramid. 
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On April 8, 1982, I was studying – using electron microscope – a rapidly solidified 
aluminum alloy with 25–wt% manganese. The specimen contained mainly a nodule-like 
phase. When I looked at the selected-area diffraction pattern taken from an orientation in 
which one such nodule was clearly diffracting many electrons (as the bright-field image was 
pitch-black), I saw for the first time the amazing tenfold diffraction pattern. My transmission-
electron-microscopy (TEM) logbook from that day is a good record of what I felt. For plate 
number 1725 (Al–25% Mn)), I wrote, “10 Fold???”  

At first glance, it was clear that the diffraction pattern was either taken from a multiply 
twinned crystal, or from something exciting. Within a couple of hours, I oriented the crystal in 
various orientations, and took a series of different diffraction patterns, a series of dark-field 
images, and several micro-diffraction patterns. No twins could be identified at the resolving 
power of the microscope, about 1 nm for the conditions of the specimen. With these results at 
hand, I inquired among my NBS colleagues about 10–fold symmetry in crystals. In doing so, I 
met a lot of ridicule, which came in different forms: from educated guess that the diffraction 
pattern was a result of multiple twins, which I knew clearly it was not, to fatherly advice 
about reading the x-ray crystallography text-books again. During 1982 and 1983, I discussed 
my fivefold diffraction patterns with many scientists. Although I communicated with many 
scientists and heard several wild guesses, nobody came up with a model or an idea explaining 
what that phase was.  

I continued to work with rapidly solidified aluminum alloys for the rest of my stay at 
NBS. In the process, I observed the same set of symmetries in Al–Fe and Al–Cr alloys and 
started to believe it to be general for Al–transition-metal alloys. However when I tried to 
produce the symmetries in Al–Cu alloys, it did not work. In October 1983, I returned to the 
Technion and discussed my results with several colleagues. Only one of them, Ilan Blech, our 
X-ray expert who soon left academia to do business in California, believed in my results. 
Together we looked for structural models that would, when Fourier-transformed, gave the 
required patterns with the two-, three-, and five-fold symmetries as well as the proper angles 
between them. At a later stage, this became known as the icosahedral glass model. The model 
required that the icosahedra be joined by their spatial orientation.  

My collaboration with Ilan resulted in a paper sent to the Journal of Applied Physics in 
the summer of 1984. The Journal of Applied Physics sent it back quickly, and the editor noted 
that the article was not suitable for the journal as it would not interest the community of 
physicists. Following their advice, I sent it immediately to Metallurgical Transactions where 
it ran a year later. While the paper was under review by Metallurgical Transactions, we wrote 
the second, shorter article, and sent it to Physics Review Letters where it was rapidly accepted 
and published very quickly in November of 1984. This article created a great wave of interest 
in the community of physicists contrary to the expectations of the editor of the Journal of 
Applied Physics. Quasiperiodic materials quickly drew a swell of attention. Today there are 
about 6,000 articles in the scientific literature as well as some 30 books, most of which are 
conference proceedings.” It should be added that in 2011 Dan Shechtman became the Nobel 
Prize winner in chemistry.  
 
6. Disorder 
Defect types. In a real crystal atom arrangement differ from that of an ideal one. A distinction 
is made between the dynamic distortions connected with thermal vibrations of atoms and the 
static distortions produced by structure defects. The influence of defects on the properties of a 
real crystal correlates with their dimensionality by which is meant the number of dimensions 
defining the size of a defect. A point defect or zero-dimensional is one that is localized in a 
volume of the order of an atom. Usually it is a vacancy, an interstitial atom, or an impurity 
atom. If the regular arrangement of atoms is disrupted in the vicinity of some line, the defect 

102 Alexander I. Melker



 

is named a linear or one-dimensional, e.g. a dislocation. Irregular arrangement of atoms along 
some surface generates a surface or two-dimensional defect. Among these are stacking faults, 
grain boundaries, cracks.  

Ideal lattice. An ideal infinite crystal lattice is an abstraction which is convenient to use, 
as a first approximation, when crystals are analyzed quantitatively. Let us consider a real 
system of atoms being ordered, if its properties can be described on the basis of an ideal 
lattice and the distortions can be taken into account with the help of the theory of 
disturbances. If this assumption does not take place, the system is a disordered one.  

Take up a simple ideal lattice. It has several attributes of ordering.  
 All the atoms are identical, 
 One and the same coordination number (equal number of nearest neighbors),  
 There is a short-range order, 
 There is a long-range order. 
Types of disorder. Exclude the first attribute, i.e. take atoms of two kinds and distribute 

them randomly at the lattice sites. Then we obtain a binary alloy characterized by a 
composition irregularity or composition disorder. If the number of other type atoms is not too 
large, they can be considered as an impurity and an ideal lattice can be taken as a first 
approximation. However, with increasing of impurity atoms the first approximation becomes 
invalid. Perhaps this is the reason why up to now there is no the theory of disordered alloys. 

Suppose that the second attribute is not realized. Then the atoms located in different 
places will have unequal number of nearest neighbors. As a result one confronts with a 
topological disorder (Gr. τοπος–place +λογος–doctrine). Almost all defects produce such type 
of disorder, namely, vacancies, interstitials, dislocations, disclinations, grain boundaries, 
except stacking faults.  

Thermal vibrations eliminate a short-range order and, as a consequence, generate a 
positional disorder. If the vibrations are small, an ideal lattice, as before, is a good first 
approximation. In doing so, the coordinates of atoms can be represented by the formula 

 

sls rrlR  . 

 
Here δrsl is the displacement of atom s from its equilibrium position in the elementary cell l.  

Let us take up how a long-range order is compatible with crystal defects. Take a real 
crystal with defects, say dislocations. Strictly speaking, the translational long-range order, 
which is characteristic of an ideal lattice, takes no place in such crystal, so the translational 
invariance is observed only at a distance of the order of a mean distance between the defects; 
so called a mean or local order. At the same time, many dislocations of different signs 
produce different distortions which compensate each other, and so one applies the notion of 
long-range order to real crystals. However, to emphasize the distinction from an ideal crystal, 
this order is named a topological long-range order, at that the defects divide all the real 
crystal into lesser parts with the translational order of the ideal crystal. 

Paracrystals. A short-range order disappears not only due to thermal vibrations; it can 
be removed with the help of static distortions. Consider, for example, a paracrystal (Gr. παρα–
near), where the sites of a crystal lattice are given by random way (R. Hosemann, 1950). In 
one-dimensional case these sites are found according to the following algorithm 

 

21212110 xxa2xaxx,xax,0x    
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Here a is the lattice parameter, the value δxi can be either positive or negative, whereas the 
variance δxi

2 is always positive, so  
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At the same time, for an ordinary crystal 
 

constxx 22
n   . 

 
Therefore, for a paracrystal the mean-square deviation of an atom from its equilibrium 
position is proportional to the distance from the coordinate origin. It is the inventor’s opinion 
that this model represents the structure of the state which intermediate between an ordinary 
crystal and a liquid.  

Two-dimensional paracrystals can be classified into two groups: laminar (Lat. lamina–
leaf, plate) and turbulent (Lat. turbulentus–stormy, violent). The laminar paracrystals have no 
static displacements along the axis parallel to one of non-coplanar base vectors. In the 
turbulent paracrystals, static displacements take place along all the base vectors. The structure 
of a paracrystal contains defects which are call paracrystalline.  

Global disorder. At last, when there is no both short-range order, and long-range order, 
the structure, as a whole, is disordered. This global disorder is characteristic for amorphous 
materials.  
 
7. Amorphous materials 
Glass transition. It is customary to assume that matter can exist in four states (plasma, gas, 
liquid, and solid) depending on external conditions. The equilibrium state of matter, which 
differ in properties from other possible equilibrium states, is named a phase (Gr. φασις–
appearance, showing up). Usually the transition from one phase to other due to changing 
external conditions (temperature, pressure, etc.) produces a stepwise change of physical 
properties at any particular value of an external parameter. For example, there is the stepwise 
change of liquid volume while crystallization (Fig. 16a), however, for glasses this rule is 
invalid (Fig. 16b). In the latter case, solidification develops gradually. In order to distinguish 
solid state from liquid, one is compelled to introduce a special temperature; the temperature of 
glass transition, whish is defined as the intersection point of two asymptotes (Fig. 16a). From 
the thermodynamics standpoint, liquid and glass state is the same, but technological 
properties of materials in these states are so much unlike that is necessary to introduce new 
notions.   
 

 
Fig. 16. Dependence of volume on temperature: 

a) for crystals, b) for glasses. 
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Structure of amorphous materials. Glass refers to non-equilibrium disordered phases of 
solids which are known under different names: noncrystalline solids, common and metallic 
glasses, amorphous materials. We will use the last name. Amorphous materials have no long-
range translational and rotation order, but they have a short-range order that is observed 
experimentally. It is thought that during cooling structure begins to lag from temperature. As 
a result, we obtain a glass (nonequilibrium structure) which fixes a liquid (equilibrium 
structure), i.e. practically we freeze the liquid without changing its structure. 

The question arises what elements of order are present in the structure of this frozen 
liquid. The early models of amorphous materials are based on a random packing, at first of 
solid and then of soft balls (John Desmond Bernal, 1960). It turns out that the structure 
contains clusters of almost regular tetrahedra with common faces. The tetrahedra are rather 
small so it is not possible to insert one more ball of the same size into it. It should be 
remembered that a regular tetrahedron, the simplest Plato body, is a structure element of some 
crystals. In f.c.c. crystals these tetrahedra have no common faces, in h.c.p. crystals the 
tetrahedra are connected by pairs (one common face; Fig. 3, on the right). B.c.c. structure can 
be thought of as composed of four tetrahedra, two neighboring tetrahedra having a common 
edge. However, these tetrahedra are irregular, the common edge equals the lattice parameter 
a, whereas remaining edges are less and equal to a√3/2. Therefore we can introduce a non-
crystallinity parameter, which can be formulated in the following way. If a cluster has three 
and more tetrahedra, such structure is non-compatible with a crystal and the solid is an 
amorphous material.  

Besides tetrahedra, one can take other polyhedrons as a structure element, e.g. a 
tetragonal pyramid (semi-octahedron), of which it is possible to construct non-elementary 
polyhedrons (Fig. 17). Their inner holes resemble vacancies in crystals. For example, a 
polyhedron of three identical semi-octahedra gives a trigonal prism, two semi-octahedra on 
the bases of a square Archimedes antiprism form a polyhedron of 16 triangles etc. 
Combinations of various polyhedrons form create a lot of structures, having no long-range 
order with almost equal distances between the nearest neighbors. This geometric modeling 
satisfies Rudyard Kipling’s principle: “There are 66 ways to compose the songs of tribes, and 
all are right,” but usually it is in rather poor agreement with the principle of least action, so we 
do not dwell on it.  
 

 
 

Fig. 17. Close-packing of atoms in Bernal pseudo-nuclei: 
a) semi-octahedron of two adjacent tetrahedra, 

b) triangular prism of three semi-octahedra, 
c) Archimedes antiprism with two semi-octahedra. 
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Molecular dynamics and topology. The first rather new method of investigation is based 
on the conservation laws, so it allows obtain structures which incorporate both principles. 
Consider one of the most successful studies in this field (V.A. Likhachev, A.I. Mikhailin, 
L.V. Zhigilei, 1994 [7]). F.c.c. crystallite of 864 atoms was heated beyond the melting 
temperature up to total disappearance of the crystal structure, and then was quickly cooled. 
The amorphous structure obtained was divided into tetrahedrons, which were analyzed by a 
topological method.  

The method consists in the following. Put some point in conformity with each 
tetrahedron (Fig. 18a). If two tetrahedrons have a common face, one connects the 
corresponding points with a line (Fig. 18b). As a result, one obtains a net describing a 
structure of amorphous material. The distance between neighboring points can be given 
arbitrary; the lines can be right, curves and even broken. In other words, when constructing 
the net, one does not use the notions of classical geometry, such as distance, 
straightforwardness, smoothness. The net can be stretched, compressed, but in any case one 
will obtain similar forms. The type of geometry that allows such transformations is named 
topology, so the net is a topological figure.  

The topological analysis shows that the structure of amorphous material contains five-
linked tetrahedron rings (Fig. 18c), branched chains of tetrahedrons (Fig. 18e), their 
combinations (Fig. 18f), and sometimes more complex figures such as an icosahedron (Fig. 
18d). The atomic configuration of tetrahedron chains is such that they represent helices. The 
potential energy of atoms entering into these structures is even less than that of at sites of a 
crystal lattice. These regions of amorphous material are more dense and rigid. They create a 
skeleton of amorphous material and ensure its stability. Topological figures reveal common 
features of the real rigid structures of a material and simplify their analysis (Fig. 19). 

Amorphous metallic alloys, metallic glasses, consist of by 80% transition metals and 
20% polyvalent non-metals (boron, carbon, nitrogen, silicon, phosphor, etc. The latter play 
the role of glass-forming elements. The materials have high strength and large plasticity. They 
are metastable systems which crystallize when being heated up to the temperature 
approximately equal to half the melting temperature.  
 

 

Fig. 18. Tetrahedron clusters and corresponding topological figures: 
a) tetrahedron, b) two adjacent tetrahedrons, c) decahedron, d) icosahedron, e-f) chains. 

[V.A. Likhachev, A.I. Mikhailin, L.V. Zhigilei, Phil. Mag. A69 (3), 421 (1994)]. 
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Disclination model and molecular dynamics. In parallel with the model of random 
closed-packed structure, there also have been other models of amorphous state. Among them 
the disclination model is very popular, because it has a higher degree of generality [8]. 
Indeed, the disclination model can describe various physical phenomena: mechanics of liquid 
crystals, glass structure, large plastic deformation of common crystalline materials, etc. The 
model is based on the approach which considers any glass as a crystal in curved space. It 
should be mentioned that the drawback of such approximation is connected with the necessity 
to introduce in a system considered a large number of disclinations, to a certain extent in a 
rather artificial way. Besides, the disclination model, in a pure form, does not take into 
account point amorphous defects, similar to vacancies in crystals, topological disorder 
defects, etc.  

Obviously, it is not easy to study a subject which nature is not well defined either by 
analytical or experimental methods. In addition, analytical methods of continuum mechanics 
are ineffective for investigating defects at the atomic level, e.g. crack tips, since those 
methods lead to infinite values of strains and stresses in the vicinity of such defects, what has 
no physical sense. Using special postulates, those divergences can be avoided, but the 
question remains how to verify the validity of the postulates introduced. For this reason 
molecular dynamics seems to be the most promising approach for investigating deformation 
and fracture of amorphous materials. This method of computer simulation consists of solving 
Newton equations of motion for an N-body system. It allows investigate plasticity and 
fracture of materials without introducing special postulates. But even molecular dynamics 
needs a model. From what has been said, it follows that the disclination model, in spite of its 
drawbacks, more closely parallel amorphous state than other models.  

For the sake of simplicity, we restrict ourselves with a two-dimensional model. 
Generally speaking, two-dimensional models allow better present the results, and, as a 
consequence, give a better insight into the mechanism of a process, especially at an early 
stage of investigation. As a starting point, the disclination model of amorphous structure 

Fig. 19. Topological figures (up) and corresponding atomic structures (bottom). 
 [V.A. Likhachev, A.I. Mikhailin, L.V. Zhigilei, Phil. Mag. A69 (3), 421 (1994)]. 
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developed by V.A. Likhachev, A.I. Mikhailin, V.E. Shudegov [8, 9]. In this model the initial 
structure is obtained from a perfect crystallite having a closed-packed triangular lattice at first 
of 1599 atoms. Twelve positive and eleven negative wedge disclinations having the strength 
ω = π/3 are incorporated into the lattice. As a result, the structure lost a long-range order, 
there appeared 18 atoms with the coordination number z=5 and 16 atoms with z=7. It should 
be noted that the initial amorphous structure is extremely nonequilibrium, so the model must 
be improved. 

The upgrade was done as follows [10]. The structure is allowed relax to an equilibrium 
static configuration with the help of molecular dynamic procedure which dissipates the kinetic 
energy. The procedure consists of equating atom velocities to zero whenever the kinetic 
energy reaches a maximum. Since the initial structure is extremely nonequilibrium, the first 
calculations were made with a very small time step, less than one thousandth of an atomic 
vibration period. During the relaxation, there appeared an excluded volume. In order to 
prevent its formation, excess atoms were inserted into low-density regions; to the end of 
relaxation their number attained 60.  

The amorphous structure obtained is shown in Fig. 20. The atoms within compressed 
regions are denoted by dark circles, and those of stretched regions by light circles. The 
structure contains two types of atoms; the atoms with the coordination number z=6 that 
corresponds to a close-packed triangular lattice, and the atoms with z ≠ 6, namely z=5 or z=7. 
At the same time for the atoms with z=6, the variation of the distances between the nearest 
neighbors is significantly larger than that of due to thermal vibrations for common crystals. 
We can say that the amorphous structure contains a topologically crystalline phase in which 
domains of a real amorphous structure are incorporated.  
 
 

 
 
 

Fig. 20. Two-dimensional amorphous structure obtained from a disclination model [8].  
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We understand under the topologically crystalline phase the atoms with the coordination 

number z=6 which form domains having no short-range order but having curved translational 
invariance. Briefly we will name this phase a “topocrystalline.” All the atoms with z ≠ 6 
belong to the genuine amorphous phase. The domains of topocrystalline phase either pass 
smoothly into each other or are separated with disorientation boundaries composed of the 
genuine “amorphous atoms” with z ≠ 6; they are joined with solid lines. It should be 
emphasized that the entire specimen incorporates compressed and stretched regions which do 
not correlate with the domains of topocrystalline and amorphous phases.  

Molecular dynamics, deformation and fracture. The specimen obtained is stretched 
along the y-axis in the following manner [10, 11]. The coordinates of every atom are changed 
from x, y to x (1–ν ε), y (1+ε), the strain ε being equal to 0.5 or 1.0 %. Such strain step allows 
observe structure changes in detail. Since Poisson ratio ν for amorphous state is unknown, it is 
accepted being 1/3 as for an isotropic solid. Then the specimen is allowed relax to the 
temperature within five degrees of absolute zero. For boundary atoms, two types of boundary 
conditions are used. Either all the boundary atoms are fixed (Fig. 21, at the left), or only a part 
of the boundary atoms, which are located at the regions approximately normal to the stretch 
direction, are fixed; other boundary atoms taking part in relaxation (Fig. 21, on the right).  

During stretching one can observe various structural changes which are connected with 
formation, rearrangement and disappearance of the disorientation boundaries (Fig. 21, 
beginning). Such changes can be understood in the framework of the theory of dislocations. 
At the same time, there appear a large number of so-called amorphous point defects 
(amorphous vacancies) in the vicinity of the disorientation boundaries located preferentially 
normal to the stretch direction. In due time, they transform into cracks which grow by a 
zigzag way; some cracks can disappear, others coalesce, forming a main-line crack (Fig. 21, 
end).  

It should be emphasized that simultaneously the atoms of the topocrystalline phase are 
displacing in such a manner as if its different parts were rotated around the axes normal to the 
plane. This process leads to decreasing the curvature of the topocrystalline phase and to 
transformation its domain into domains of a common crystalline phase separated by small-
angle boundaries. Using the macroscopic language, one can say that large plastic deformation 
of an amorphous material is realized via rotation modes of its mesoscale parts. The stress-
strain diagram for a specimen with the rigid boundary conditions is shown in Fig. 22. 

Mechanics or Kinetics? To construct a comprehensive amorphous structure and to do 
computer simulation is half the work; it is necessary to translate the discrete-model results 
obtained into more usual continuum equations, paying special attention to nonlinearity of 
atomic interactions. The traditional approach goes back to Claude L.M.H. Navier [12] and 
consists in the following [12-16]. The equations of motion for a system of particles are 
converted into the equations of the elasticity theory with the help of different postulates and 
approximations. Then various mechanical models of deformation and fracture, based on the 
concept of lattice defects, are developed. This approach is applied with success for common 
solids, but did not lead to success in the case of amorphous materials.  

To our mind, the reason is connected with two circumstances: amorphous material is 
not a common solid, and defects are not a crucial point in the deformation of amorphous 
materials. On the basis of the molecular dynamics study considered, one can see that the main 
feature of the deformation is a forced phase transition from a frozen liquid state to a 
crystalline one, so the approach must differ from a purely mechanical. We suppose that it 
must be kinetic, similar to that of [17]. 
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Fig. 21. Stretching two-dimensional amorphous structure under different boundary  
conditions: rigid conditions at the left and semi-rigid ones on the right (beginning). 
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Fig. 21. Stretching two-dimensional amorphous structure under different boundary  
conditions: rigid conditions at the left and semi-rigid ones on the right (end). 
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Fig. 22. Stress–strain diagram for two-dimensional amorphous structure  
under rigid boundary conditions [8]. 

 
Kinetic theory of deformation. The computer simulation results give atomic “bottom-

up” data for developing a kinetic theory of amorphous-materials deformation. Let us single 
out the structural elements responsible for the deformation. They are: atoms with z=6 of the 
topocrystalline phase (n1), atoms with z=6 of the common crystalline phase (n2), and atoms 
with z ≠ 6 of the amorphous phase atoms (n3). Therefore we have three kinds of topologically 
different atoms (i=1, 2, 3) which are in different state with their own energy Ei. The rate 
equations relate the occupation probabilities of atoms in various states. The change in the 
corresponding states is caused by application of a load, and can be written in the form 
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Here νij is the frequency with which an atom jumps from state i to state j. As follows from 
Fig. 21, the number of atoms with z ≠ 6 has a small share during extension, so assume that n3 

≈0, ν13 ≈0, ν23 ≈0. Therefore the set of equations reduced to  
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Since now n1= N – n2, where N is the total number of atoms without the small share, we have 
for state 2 
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From this it follows that  
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provided 0n 0t2  . Separating variables, we have 
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Integrating with respect to time, we obtain 
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Therefore 
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and finally  
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For t , we have 
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The jump frequency is assumed to be thermally activated with the activation energy E 
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where k is Boltzmann’s constant, T is the absolute temperature and ν0 is a constant. The action 
of the applied load σ is assumed to decrease the activation energy for the transition of atoms 
from the topocrystal to the common crystal by  E ; here γ is the activation length. As a 
consequence, the jump frequency ν12  increases a little, and the jump frequency ν21 decreases a 
little, so that 
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Suppose that the occupation of state 2 is proportional to the observed strain ε, i.e. ε ~ n2. 

In this case 
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where tvN~0  for v/1t  .  
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The inverse function has the form 
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Therefore we have two input parameters, 0, , to describe stress-strain diagrams of 

amorphous materials. It is interesting to note that similar situation takes place for polymers; 
however the dependence of stress on strain is a little different [18]  
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Fracture as a parametric resonance. The kinetic theory developed governs the stress-

strain diagram of amorphous materials under the conditions when there is only deformation 
and no fracture. In other words, it gives a trend (Fig. 22, dotted line). However, from Fig. 22 
it follows that large divergent vibrations are superimposed on the trend. Consider this 
oscillating stress component. It has the following form 
 

)t(sin)t(expAx   . 
 
Here A is the amplitude of vibrations; β is the divergence factor; ω is the frequency, and δ is a 
phase. This means that the vibration part of the stress is the solution of the equation [19] 
 

0xx2x 2
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where ω0 is the eigenfrequency of a system in the absence of divergency and 22
0   . 

In this case it is supposed that the vibration frequency is constant. However, from Fig. 22 we 
notice that the frequency is decreasing with strain. To overcome the contradiction, one has to 
consider the above reasoning only as a first approximation. The equation discussed refers to 
only to isolated systems. There are also unclosed systems for which external action, being 
periodic, leads to changing their parameters. 

Consider, for example, a rode with built-in edges under the action of a vibrating force. It 
is shown that for such rode composed of discrete particles interaction of longitudinal and 
transverse vibrations produces a parametric resonance [19, 20] which can be described by 
Mathieu equation [21-23] 

 
0x)tcosh1(x 2

0   . 

 
Here ν is the frequency of an external force, h <<1. The periodic solutions of the equation are 
known as Mathieu functions and have the form  
 

)t(P)t(exp   
 
where μ depends on ω0  and h; P(t) is a periodic function.  

To characterize the vibration stress component, we will use the following equation 
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The equation can be named as Mathieu equation with negative friction. Suppose that ν<< ω0. 

In this case sin νt~ νt, and the equation takes the form 
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where th10f   , and hence 
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The equation was investigated numerically with a positive friction coefficient for different 
combinations of β, ω0, ν [24]. It turned out that the equation correctly described self-
organization of biopolymers. Just the same situation takes place in our case. 

However the main question remains, why the friction coefficient is negative. Mathieu 
equation originates from the following equation [19]  
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where m, k are coefficients of Lagrange function. For m=const one obtains the equation of a 
linear oscillator. Suppose that the mass m decreases with time, say as  
 

)t21(m)t(m  . 
 
Then we have  
 

0xkxm2xm    , 
 
or 
 

0xx2x 2    , 
 
and we have negative friction. In our case the apparent mass decreasing is connected with 
crack formation. The cracks grow and reduce the effective cross section of a specimen. As a 
result we have negative friction and divergent vibrations.  
 
8. Conclusion 
We have considered the main items of the history of ideas on the structure of condensed solid 
matter. They are divided into two principal groups; one is based on discreteness (numbers, 
atoms), the other on continuity (geometrical figures). The evolution of these ideas has led to 
such notion as crystals, long-range and short-range order, continuous and discrete space, 
quasicrystals, types of disorder, amorphous structure. In its turn the new notions generated 
new theories, such as group theory, topology, etc. 

Significant attention was given to rather new science, molecular dynamics, which 
became a powerful instrument for solution of many problems connected with the structure of 
disordered phases; other methods had failed. Leaning on molecular dynamics prompt, we 
have developed kinetic theory of deformation for amorphous materials and mechanical theory 
of fracture of these materials based a parametric resonance. 
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