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Abstract. The nonlinear cubic Shrödinger equation is integrated numerically for quantum 
systems confined by potential walls of a well. If nonlinear potential describing nonlinearity is 
distributed on the whole width of the well, soliton generation is possible. For the nonlinear 
potential distributed on the right half of the well with free motion on the left one the 
propagation of waves occurs. Solutions for the probability density, expectation positions and 
velocities of the wave were analyzed under different initial conditions including the Gaussian 
and specified wave packets.   
 
 
1. Introduction  
Soliton problem was intriguing and promising in during the 20th century. Great interest to the 
investigations is supported also at the present time. In those investigations, much attention is 
given to unbounded in length systems. There different types of waves have been investigated 
analytically as well as numerically [1, 2]. At the same time, the problem of solitons in the 
bounded quantum systems with impenetrable walls remained open. In our paper, we 
investigated one-dimensional quantum system, bounded by potential walls including 
nonlinearity on the total width or only in its half.  
 
2. Basic equations and assumptions 
The dynamic of spatially bounded quantum system is considered in domain 
 

L x L   ,                 (1) 
 
where x  is the coordinate located in  ;L L . On the domain boundaries the wave function 

 tx,  satisfies to the condition  
 
  0,  tL ,                 (2) 

 
where boundaries are of the walls of an impenetrable well, t  is the time. To set Cauchy’s 
problem it is necessary to specify the corresponding initial condition 
 
   xtx 00,  .                (3) 
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Below, we consider two types of these conditions. In the first case, we use the Gaussian 
packet, in the second one the solution of the nonlinear cubic Shrödinger equation. The wave 
function  ,x t  satisfies the normalization condition 

 

* 1
L

L

dx


   .                 (4) 

 
To describe the wave packet dynamics at conditions (2), (3), the time dependent Schrödinger 
equation is used  
 

2 2

22
i U

t m x

 
    

 
 ,               (5) 

 

where 
2

U K   is the nonlinear potential;   is the reduced Plank constant; ,i m  are 

imaginary unit and mass, respectively. The transition to the non-dimensional quantities and 
operators in Eq. 5 can be obtained by means of the basic units of length l , time t , and 
energy 0U  as follows 
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As results, we have 
 

/x l   , lLL  / , tt  / , 0/
~

UUU  , 
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and the Schrödinger equation is rewritten as 
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The quantity U  becomes non-dimensional and equal to 
 

2
U k  , 

K
k

l



.                (7) 

 
The normalization condition (4) can be rewritten as 
 

1
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d
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

 .                 (8) 

 
The nonlinear potential (7) in Eq. 6 plays the fundamental role in dynamical properties of the 
quantum system. 
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By using the standard formulae for the probability density and probability stream 
density, in the next analysis we introduce the non-dimensional velocity of the probability fluid 
V  determined as follows 

 

 ~~ *N , N
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The non-dimensional velocity operator can be defined as /V i     . For the dynamical 
analysis we shall also calculate the mean values of the position and velocity by means of the 
formulae 
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The next sections will be devoted to the soliton solutions and propagating waves. 
 
3. Soliton waves  
Firstly, we discuss the solutions of Eq. (6) at 2k   for the potential U  distributed on the 
whole width [ 8 , 8 ]   of the well. For preparation of the initial packet we used the soliton 

solution (1.62) from [1] satisfying to the condition 0   at   ; it can be presented as 

 

0

1
sech( )exp( 0.5 )

2
i     .            (11) 

 
Initial packet is located in the vicinity of the point 0   and has the initial velocity 0 0.5V  . 

The extension in length of the packet is very small in comparison with the well width. The 
numerical calculations are shown in Figs. 1-3. In Fig. 1 we see the picture of the probability 
density values on the plane ( , )  . It demonstrates the motion similar a classical particle with 
the constant velocity between the well walls. After collisions the particle reflects from the 
wall and changes the sign of velocity. The mean position    and velocity V   are 

shown in Figs. 2, 3. The derivative d d    is consistent satisfactorily with V  . The 
accuracy of calculations was not very high and became worse with time due to collisions. The 
normalization integral increases jump and then returns to unity. The numerical calculations of 
probability stream density were also carried out, they agree with the results of other 
calculations. The width of trajectories is thin and does not enlarge (see Fig. 1). This property 
allows declaring that nonlinearity caused by 0 0U   plays self-organizing role in the 

formation of a soliton. 
If 2k   and the potential U  is distributed on the whole width of the well, but the initial 

condition is Gaussian packet 
 

 
2

0 ( ) 0.751126 exp exp 0.5
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i
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 
           (12) 
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the dynamical picture is changed. Here, the wave-packet solutions are not similar to ones in 
the previous regime. The trajectories on the plane  ,   become broader than in Fig. 1 and 

amplitude    is decreased. It is believed that soliton solutions are destroyed or do not exist 
at large times.  
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Fig. 1. Map of probability density values  at 2k   in [ , ]L L  , 0 0  , 0 0.5V   (regime a). 
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Fig. 2. Mean position as a function of time in regime (a). 
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Fig. 3. Mean velocity as function of time in regime (a). 
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4. Constituent quantum system 
In this section we consider the quantum system having properties 0k   for [ 8 ,0]    and 

2k   in [0, 8 ] . Differently, in the domain [ 8 , 0]  the potential 0U   and the quantity 

0U   for [0, 8 ] . The initial wave packet has a form  
 

0

1
sech( 3)exp( 0.5 )

2
i       .           (13) 

 
In Fig. 4 the probability density is presented on plane  ,  . The initial velocity 0V   is 

directed to the left and equal -0.5; initial position 0 3   and displayed to the right form 

0  . The wave packet is moving to the left, then, in point 0   the main part of the 
probability fluid is reflected and remains in domain [0,8 ]  during a prolonged time (see Fig. 
4). The very small portion of probability fluid is not reflected and passes through 0   into 
domain [ 8 , 0] , then it is spreading.  
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Fig. 4.  Map of probability density at 2k   in [0, ]L , 0 3  , 0 0.5V    (regime b). 
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Fig. 5. Mean position as function of time in regime (b). 
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In Figs. 5, 6 we see the sequence of this process. The accuracy of calculations becomes 
worse at times when the wave packet collides with walls. Normalization integral increases at 
instant of time collision to 33 10 , after a short impulse returns to unity, and the process 
repeats. In spite of its limits, we have a good qualitive, although crude quantitative model of 
the dynamical process. Contrary to the previous case with 2k   on the whole width of well, 
here the wave packet becomes more broad and spreading. The mean position in Fig. 5 tends to 
zero and then increases while mean velocity (Fig. 6) increases and then the growth is slowing 
down. For comparison, consider the dynamical regime with the opposite initial velocity 

0 0.5V  , but the remaining parameter being the same as in the previous regime. The map of 

probability density values on plane  ,   is presented in Fig. 7. It shows the quick change of 

the dynamical process. The quantities   , V   are plotted in Figs. 8, 9. If 0k   and 

respectively 0U  , then for both initial conditions we have the known solutions for the 
packets in the well with impenetrable walls. 
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Fig. 6. Mean velocity as function of time in regime (b). 
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Fig. 7. Map of probability density  at 2k   in [0, ]L , 0 3  , 0 0.5V   (regime c). 
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Fig. 8. Mean position as a function of time in regime (c). 
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Fig. 9. Mean position as function of time in regime (c). 

 
 
5. Conclusion  
In the context of the nonlinear cubic Schrödinger equation, it has been investigated the wave 
problem for concrete parameters and initial conditions. The influence of sharp transition from 
linear properties to nonlinear ones on wave propagation was found. Solitons and spreading 
waves were discussed. 
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