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Abstract. The aim of our work is to discuss how the surface displacements caused by an 
applied force can be used for the identification of defects placed in near-surface layers of the 
body. As an illustrative example of the possibility for such identification, the elastic problem 
for the half-space weakened by a circular hole is considered. First of all we present the 
complete and correct analytical solution of the plane elasticity problem for the concentrated 
force acting on the surface of a half-space with a hole. We describe the biharmonic stress-
function used for the derivation of stresses and strains in the half-space with a hole and the 
associated biharmonic function that allows to determine the displacement field. Both 
functions are given in the form of Fourier series with the compact coefficients. It is shown 
that the found analytical formulas of surface displacements give the way to find the circular 
hole diameter and position when the applied force and elastic modules of the material are 
known. 
 
 
1. Introduction 

The displacements at the surface of an elastic body induced by an applied force depend 
on the state of near-surface material of the body and can be sensitive to defects of various 
natures that are present in the surface vicinity. It is expected that with the help of surface 
displacements caused by applied force, one can determine the parameters of the subsurface 
defects. These defects are inhomogeneities, voids and cracks (Fig. 1). Thus, the information 
on how the defect affects the surface displacement induced by the given force is required for 
elaboration of approaches to the defect identification. This is the subject of the inverse 
problem for the determining of defect parameters from known surface displacement fields 
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generated by the given force. The modern tools used by the indentation technique [1] make it 
possible the precise measurement of the surface displacements. Practical motivation for 
investigation of surface displacements is related to the progress in use of tactile sensors (see 
review [2]). Such sensors, e.g. biologically inspired sensors, are able to detect force in a 
specific direction, in particular when the force is acting on the surface of an elastic body. 
Additional equipment allows simultaneous measurements of the displacements at various 
points at the surface of this body.  

 
 

 
 
 

Fig. 1.  Near-surface layer of the body with inhomogeneity, void and crack. 
 
One cannot state the inverse problem without having in hands the solution of the direct 

problem. In the following we focus on the direct problem in the simplest case of a plane 
elasticity problem for an isotropic half-space with a cylindrical hole. To approach this 
problem the use of bipolar coordinate system is convenient [3, 4]. 

The algorithm for solving the plane elasticity problems with the geometry 
corresponding to the bipolar coordinate system, in particular, the modified algorithm for the 
half-space with a hole, was given G.B. Jeffery as early as in 1920 [3]. In 1962, R.M. Evan-
Iwanowski published the stress functions for this problem [5]. The author applied the 
algorithm by G.B. Jeffery and considered the normal and tangential forces acting on the 
boundary of the half-space. However in practice, the use of the solution from Ref. [5] is not 
possible, because of the evident mistakes in published formulas. Later, this problem has been 
solved in other ways applying numerical methods and has been extended, for example, to the 
case with elliptical hole (see, e.g. [6]). In any case, published and known solutions do not 
allow anyone to determine the displacement field in the loaded half-space with a hole, in 
particular, the displacements at the surface of the half-space.  

In order to get valid analytical stress functions and elastic fields and, in particular, to 
determine the surface displacements, we re-investigated this classical elasticity problem.  

 
2. Plane elasticity solution for a half-space weakened by a circular hole and loaded by a 
concentrated force 

2.1. Statement of the problem, geometry and basic equations. Let us consider an 
elastic half-space 0y   with an inner circular cylindrical hole. The linear force 

T x N yf f f e e  is applied at the point 0( ,0)x  (Fig. 2). It is required to find the analytical 
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solution of this elasticity boundary value problem, i.e. to determine biharmonic stress function 
and the elastic fields in the half-space with hole and to determine the displacements at the 
half-space boundary. 

A convenient coordinate system to get solutions for elasticity problem in such a 
geometry is bipolar coordinate system ( , )  . Relationship among bipolar ( , )   
coordinates, Cartesian coordinates ( , )x y , and polar radius r  are listed below.  

 

 
 
Fig. 2. An elastic half-space 0y   containing a circular hole and loaded by linear force 

T x N yf f f e e . The bipolar ( , )   and Cartesian ( , )x y  coordinate systems are shown. The 

hole and the boundary of a half-space have bipolar coordinates 1   and 2 0   , 

correspondingly. Force is applied at the point 0(0, )  that corresponds to the Cartesian 

coordinates 0( ,0)x . 

 
 

We also give useful formulas relating radius of the hole  , the coordinate of the center 
of the hole d , their aspect ratio /d  , and the shortest distance between boundary of the 

hole and half-space boundary h  with the bipolar coordinate of the hole 1 1( 0)   : 
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Here     ,      . The discontinuity of coordinate   takes place on the segment 
( , )a a   of axis 0y  (Fig. 2 shows part of the segment ( , )a a   along the positive direction 
of the axis y -axis). Above the point a  and below the point a  along the y -axis bipolar 
coordinate 0  . The axis 0x  is the line 0  , the Cartesian points (0, )a  correspond to 
   . The point at infinity has coordinate ( 0, 0)   . 

In the bipolar coordinate system stresses ( , ,     ) and strains ( , ,     ) can 

be found from the biharmonic function  ; and the displacements ( ,u v ) are obtained by using 
two interconnected biharmonic functions - main function   and associated function [3].  

In this representation the stresses are given as following [3]: 
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cosh cos

g
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The strains can be determined through the Hooke's law. 
The relations between functions   and   are defined as [3]: 
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where ,   are Lame constants. 

The displacements have the following forms in terms of the biharmonic functions   
and   [3]: 
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where ,u v  are displacements in the directions normal to the lines of constant coordinates   
and  , respectively [3],  in other words ,u u v u

 
  . 

According to Eq. (3b) associated biharmonic function   is determined up to the 
accuracy of some functions of   and  . As correctly pointed J.B. Jeffery [3], the only 
possible arbitrary terms in g , that do not affect the stresses, are given by: 

 
(cosh cos ) (cosh cos ) sinh sing Aa B Ca Da                  (5a) 

 
or in Cartesian coordinates  
 

2Ar aB Cy Dx     .            (5b) 
 
The terms in Eq. (5a,b) (except the second one) correspond to rotation about the origin and 
pure translation of a rigid body [3].  

Strains can be determined from the displacements Eq. (4) [3]: 
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Hooke's law allows one to define stresses: 

 
( 2 )          , ( 2 )          ,    .           (7a,b,c) 

 
A comparison of stresses obtained with the formulas Eq. (2) and Eq. (7) helps to verify 

the displacements, calculated from Eq. (4). 
2.2. Biharmonic function   and stresses. The required biharmonic function   is 

sought as a sum of the known function 0
,N T , giving the solution for normal ( N yf e ) or 

tangential ( T xf e ) force applied at the uniform (i.e. hole-less) half-space boundary, and an 

additional function *
,N T

 
 due to the presence of the  hole: 

 
0 *

, , ,N T N T N T   .           (8) 
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Biharmonic functions 
0

,N T  have the following standard forms [7]: 
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where 0x  is a coordinate of the applied force.  

 
The stresses corresponding to the function 0

,N T  satisfy conditions at the planar 

boundary of the half-space: 
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It is therefore required to find *

,N T , which proves the stresses satisfying  the boundary 

conditions: 
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where 1  is a  coordinate of the free surface of the hole (Fig. 2). 

The general expressions for the biharmonic functions *
,N T , which give the stresses 

that satisfy the conditions at the straight boundary Eq. (11a,b) are known [3, 4]. In order not 
to overload the subscripts N and T the formulas below we write the expression for the 
biharmonic functions *

,N T  as following: 
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It can be easily demonstrated that the stress function *  Eq. (12) with arbitrary 

coefficients 0 , , , ,c c s s
n n n nB A C A C  gives the stresses Eq. (2) satisfying the boundary conditions 

Eq. (11a,b) automatically [3]. 
The algorithm to find the coefficients 0 , , , ,c c s s

n n n nB A C A C  are defined as follows: in the 

boundary condition equations Eqs. (11c, d) the known stresses 
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and 
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  
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represented in the form of Fourier series with respect to the variable  , and the 

unknown
1
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  
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 and  
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 are expressed with the help of relations Eq. (2) through the 

biharmonic function *  in the form of Eq. (12). Equations (11c,d) are solved for the 

unknown coefficients of the series of Eq. (12) (about general algorithm see Ref. [3, 4]). 

Fourier series of stresses 
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 and the detailed algorithm for 

determining the coefficients 0 , , , ,c c s s
n n n nB A C A C  are given for the normal and tangential forces 

applied at the planar boundary in our article [7]. 
Then stresses ij  under consideration are the sum of stresses 0

ij  caused by the force in 

the uniform half-space and the additional stresses *
ij  due to the hole: 
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The terms in the sums Eqs. (13a,b,c) are calculated from the known stress functions 0

,N T  

Eqs. (9a,b) and the additional stress functions *
,N T  Eq. (12) on the basis of relations 

Eqs. (2a,b,c). 
2.3. Biharmonic function   and displacements. The displacements ,u v  for the 

considered geometry are determined as a sum of the displacements in an uniform half-space 
0 0,u v  and the additional displacements caused by the hole * *,u v : 

 
0 *u u u  ,                      (14a) 

 
0 *v v v  ,                      (14b) 

 
where, as before, ,u v  are the displacements in the directions normal to the lines of constant 
  and  , respectively [3], 

In order to derive the displacements * *,u v  from Eq. (4) in addition to the function *  it 

is necessary to know the associated biharmonic function * . This function is constructed on 

the base of the biharmonic function * [3]: 
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where the coefficients 0 , , , ,c c s s
n n n nB A C A C  are the same as in the expression for the function *  

of Eq. (12). 
We added special term *addg   in Eq. (15) to eliminate the rotation and pure 

translation of the body as a whole (see Eq. (5)): 
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Here the coefficients , ,add add add

n n nA C D  are found from the condition of vanishing 

displacements at infinity 0, 0    [8]. 

2.4. Concentrated force with a magnitude of  Nf
 
is normal to the planar boundary. 

For the normal force acting on the straight boundary of the half-space, the stress function *
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caused by the hole is represented by the Fourier series Eq. (12) with the following 
coefficients: 
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The stress function *
N , given by means of expressions Eq.(12) and Eq.(17), has quite a 

compact form and allows to find the stresses *
ij  and strains *

ij  through the series 

representation with analytical coefficients.  
On the other hand stresses 0 0 0, ,      caused by the normal force that acts to the 

uniform half-space can be represented in the bipolar coordinates α and β Eq. (1a,b) with 
functions 0

N  Eq. (9а) and relations of Eq. (2):  

 
0 02 2 3

0
2

0

(2 )
2 22 sin in inh

(cos cosh )[cos( ) s

s

o h ]

s

c
Nf

a

   


     

       
,     (18a) 

 
0 0 02 2

0
2

0

2
2 2 22(cos cos cosh ) sin sinh

(cos cosh )[cos( ) cosh ]
Nf

a

    


     

       
,     (18b) 

 
0 0 0 02 2

0
2

0

2 2
2 2 2 22(cos cos cosh )sin sin inh

(cos cosh )

s

[cos( ) cosh ]
Nf

a

      


     

        
.    (18с) 

 
Finally the total stresses can be found from Eq. (13) with the help of Eq. (2), Eq. (12), 
Eq. (17), and Eq. (18). 

For completeness, we give a formula for the stress components  , arising at the 

boundary of the hole with the coordinate 1   : 
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1 1 1 1 1[ cosh 3 2sinh ( 1 cosh 2 2 sinh 2sinh 2 )] .})n n n n n          

 

Stress component 
1

  



 as a function of the coordinate   is shown graphically 

in [8]. The behavior of stress component   at the boundary of the hole coincides with 

results presented in [6].  
We did not study the convergence of obtained series, representing the stresses *

ij , in 

full details. However, we can note that for the parameters of the hole 1 1  , the accuracy of 

the boundary conditions begins to fall in orders. Acceptable accuracy remains for the 
parameter 1 0.3  . For smaller parameters 1  it is necessary to use special techniques to 

sum the series.  
Biharmonic function *

N   caused by the presence of a hole is given by Eq. (15) and 

Eq. (16), taking into account the coefficients Eq. (17) and the following supplementary 
coefficients: 
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Under normal concentrate load the displacements of the straight boundary caused by a 

hole have a following simple form: 
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Expression Eq. (21a) shows that the displacements have the property, illustrating the 

principle of reciprocity of the work: 
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2.5. Concentrated force with a magnitude of Tf  

is tangential to the planar 

boundary. The stress function *
T  caused by the hole is represented by the Fourier series of 

Eq. (12) with the following coefficients: 
 

12
0 1 1 1 1 0

0 2
1 1

sin 2sinh sinh 2 (sinh cosh )sin

(cosh 2 1) (cosh 2 1)TB f
      

   

 
    

‰
,    (23a) 

 

1 1 1 0
1

1

sinh (sinh cosh )sin

(cosh 2 1)
c

TA f
   

 


 


,       (23b) 

 
1

1 1 1 1
02 2 2

1 1

[ sinh ( sinh cosh ) sinh ]
sin , ( 2)

2 (sinh sinh )

n
c
n T

n n n
A f n n

n n n

    
  

 
 


‰

   (23c) 

 

19Identification of defects in a solid body on the base of surface displacements



 

 
2

1
02 2 2

1 1

( 1)sinh
sin , ( 2)

2 (sinh sinh )
c
n T

n
C f n n

n n

 
  


  


     (23d) 

 
12

1 0
1

csch2 (cos 1)

2
s

TA f
  



 
 

‰
,        (23e) 

 
1

0 021 1 1 1
2 2 2

1 1
2 2

sinh ( sinh cosh ) sinh ]
tan sin , ( 2)

(sinh sinh )

[ n
s c
n n T

n nn n n
A A f n

n n n


    

  

 
  


‰

, (23f) 

 

0 0

2
21

2 2 2
1 1

2 2

( 1)sinh
tan sin , ( 2)

(sinh sinh )
s c
n n T

n nn
C C f n

n n
 

  


   


.   (23g) 

 
As a result the stress function *

T , given by  expressions Eq. (12) and Eqs. (23) allows to find 

the stresses *
ij  and strains *

ij  through the series with analytic coefficients.  

The stresses 0 0 0, ,      caused by the tangential force applied to the surface of the 

uniform half-space can be represented in the bipolar coordinates α and β Eqs. (1a,b) with the 
help of functions 0

T  Eq. (9b) and relations Eqs. (2a,b,c): 
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Finally the total stresses can be found from Eq. (13) with the help of Eq. (2), Eq. (12), 
Eq. (23), and Eq. (24). 

Stress component 
1

  



 as a function of the coordinate   is shown graphically 

in [8]. 
From the analysis of equations and diagrams one can conclude that in the case of 

normal load stresses at the boundary of the hole increase significantly compared to how it 
would be in an uniform medium. There are areas of tension and compression. In the case of 
the tangential force effect of the hole is not so noticeable. 

For the case of tangential load biharmonic function *
T  due to the presence of a hole is 

given by Eqs. (15) and (16), taking into account the coefficients Eq. (23) and the following 
supplementary coefficients: 
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Under tangential concentrate load the displacements at the boundary of the half-space 

caused by a hole have the following form: 
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Fig. 3. Contour maps of the surface displacements due to hole under the action of the 
concentrated force. (a) normal surface displacements 0

*( )Nu  at normal force; (b) the tangential 

surface displacements 0

*( )Nv  at normal force; (c) normal surface displacements 0

*( )Tu  at 

tangential force; (d) the tangential surface displacements 0

*( )Tv  at tangential force. Coordinate 

x  is a coordinate of the measured displacement; 0x  is a coordinate of applied force. The 

linear quantities are expressed in units of the radius of the hole  . The displacements 0

*( )Nu  

and 0

*( )Nv are presented in units ( 2 )

( )
Nf  
  


  

, where Nf  is a value of the applied normal force, 

,   are the elastic modules. The displacements 0

*( )Tu  and 0

*( )Tv  are presented in units 
( 2 )

( )
Tf  
  


 , where Tf  is a value of the applied tangential force. Distance between center of the 

hole and planar boundary is 1.43d  . 
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Expression Eq. (26b) shows that the displacements have the following property: 
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Comparison of   *( )
0

Tu   and *( )
0

Nv  demonstrates the expected correlation: 
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Figure 3 shows the planar surface displacements due to the hole.  
It is becomes obvious that the hole has the greatest impact on the normal displacement 

of planar boundary under the action of the normal force. 
 
3. Inverse problem: Finding the parameters of the hole from the measured surface 
displacements 
Let us assume now that there is a possibility to measure the surface displacements. One can 
measure (i) the surface displacements for the body with a defect (presumably hole) loaded by 
concentrated linear force and (ii) the surface displacements for the solid body without a hole 
loaded by concentrated linear force. For the surface displacements of loaded hole-less half-
space the exact formulas can be used also [7]. In other words the displacements 

( ) ( ) ( ) ( )
0 0 0 0, , ,N N T Tu v u v        for the body with a hole and 0( ) 0( ) 0( ) 0( )

0 0 0 0, , ,N N T Tu v u v        for the standard 

body without a hole are assumed to be known. Coordinates of points of force applications and 
the response points (i.e. the places where the displacements were measured) are the same for 
the body with hole and for the standard body. Hence we possess the information on the 
additional displacements *( ) *( ) *( ) *( )

0 0 0 0, , ,N N T Tu v u v        due to the hole in the tested body. Note that 

for the plane elasticity problem, instead of the points we mean the lines. 
We are interested in a possibility to determine the parameters of the hole, namely the 

hole size   and the hole depth h  (Fig. 2) on the base of measured displacement maps 
*( ) *( ) *( ) *( )

0 0 0 0, , ,N N T Tu v u v       , similar to the maps shown in Fig. 3. 

The algorithm will include a number of steps. From the maps one can easily determine 
the place on the surface, under which a hole is localized, see Fig. 3. This will serve as the 
origin of Cartesian coordinate system associated with a hole, see Fig. 2.  

Then the distance | |x  measured along the surface between the origin and the response 
point   should be related to bipolar coordinate   and scale parameter a by equation:  

 

2| | | cot |;x a               (29) 

 
If the force is applied at the origin of the Cartesian coordinate x=0, the bipolar 

coordinate for the force 0  is equal to    in formulas for surface displacements Eq. (21) 

and Eq. (26). Then bipolar coordinate of the hole 1  and bipolar coordinate of the response 

point   can be extracted from two equations, for instance Eq. (21a) and Eq. (21b) or from 
Eq. (21a) and Eq. (26b) on the base of the measured displacements, the known magnitude of 
the force and the known elastic modules ,  .  

The above said can be illustrated by particular examples shown in Table 1.  
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From Table 1 we obtain the hole radius  , the hole depth h , the coordinate of the 

center of the hole d , and the aspect ratio of the hole 1/ coshd     on the base of the 

measured distance | |x  between the origin and the response point   and measured surface 
displacements. Note that origin is easy to find on the basis of map (Fig. 3a), because in this 
case the displacements *( )

0
Nu  have maximum in the origin. In Table 1 the magnitudes of 

calculated parameters 1,   are in good agreement with parameters 1,   which were put 

initially into Eq. (21a) and Eq. (26b) to get so-called measured surface displacements. 
Of course, finding the roots of equations Eq. (21a) and Eq. (26b) at the given left sides 

requires knowledge of the areas where the roots can be found. But fortunately wrong areas of 
finding the roots, lead to solutions that go beyond the permissible parameters 1,  : 1 0  , 

     . This causes us to look for the roots of equations in other areas. It should also be 
noted that the accuracy of the roots depends on the accuracy of the given left sides in 
equations. 

 
Table 1. Finding of hole parameters from measured surface displacements. 

Measured 
distance 

| |x  

between 
the origin 
and the 

response 
point  , 

in 
arbitrary 

units 

Measured surface 
displacements 

caused by force 
applied at point 

0  *) 

Bipolar 
coordinates, 

calculated from 
Eq. (21) and Eq. 
(26) on the base 

of measured 
surface 

displacements 

Scale parameter 
a 

calculated from 
Eq. (29): 

2| | / | cot |a x  ,
in the same 

units as 
measured 

distance | |x  

Radius of the hole 

1/ sinha  , 

hole depth 
1

2tanhh a  , 

the coordinate of the 
center of the hole 

1cothd a  , in the 

same units as 
measured distance 

| |x ; 
aspect ratio 

1/ coshd     

1 
*( )

0 1( , )Nu    0.115  
*( )

0 1( , ) 0.014Tv     
1  1.1, 

1.57 / 2    
~1 

 0.75 
h  0.50 
d1.25 
   1.67 

1 

*( )
0 1( , )Nu    0.114 

*( )
0 1( , )Tv    0.0024 

1  1.51, 

2.12 2 / 3  
~1.78 

   0.83 
h  1.14 
d  1.96 
   2.37 

*) The units of displacements *( )Nu , *( )Nv are ( 2 )
( )

Nf  
  


 , for displacements *( )Tu , *( )Tv  the 

units of measurement are ( 2 )
( )

Tf  
  


 . 

 
 

4. Conclusions 
We have presented the analysis of a problem on the identification of defects in a solid body 
with the help of surface displacements.   

As a good example, the plane problem on finding the elastic fields in a half-space 
weakened by a circular hole and loaded by a concentrated force was considered. We have 
presented an analytical solution to this problem. The solution operates with biharmonic 
functions that allow to calculate all elastic fields, in particular, the planar surface 
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displacements, which are modified by the presence of a hole. Biharmonic functions are given 
in terms of Fourier series. The surface displacements are presented in the analytical form of 
series with compact coefficients.  

It is demonstrated that the hole size and the depth of hole buried under the surface are 
calculated on the base of analytical formulas for the surface displacements.  

We expect that the examination of surface displacements caused by an applied force 
will be used for the determination of the parameters of the inhomogeneities, voids and cracks 
placed in the near-surface layers of elastic bodies. The described method can be applied for 
the objects (defects) that modify the elastic fields caused by the applied force, i.e. for defects 
possessing the inhomogeneity property. This analysis is not suitable for dislocations, 
disclinations and pure elastic inclusions (inclusions without inhomogeneity e.g. dilatation 
centers). The above mentioned defects are the sources of their own elastic fields including the 
surface displacements. The investigation of characteristic surface displacement patterns for 
these defects has to be performed separately and should also address the presence of plastic 
component of displacement as it, for example, has been done in the study of typical “cross-
hatch” surface profile [9] related to the formation of misfit dislocations and observed in 
relaxed lattice mismatched layers.  
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