Materials Physics and Mechanics 15 (2012) 78-95 Received: September 29, 2012

A STUDY OF GREEN’S FUNCTIONS FOR TWO-DIMENSIONAL
PROBLEM IN ORTHOTROPIC MAGNETOTHERMOELASTIC
MEDIA WITH MASS DIFFUSION

Rajneesh Kumar', Vijay Chawla™
Department of Mathematics, Kurukshetra University, Kurukshetra, 136119, Haryana, India
*e-mail: rajneesh_kuk@rediffmail.com

**e-mail: vijayl kuk@rediffmail.com

Abstract. The present investigation deals with the study of Green’s functions for two-
dimensional problem in orthotropic magnetothermoelastic media with mass diffusion. After
applying the dimensionless quantities and using the operator theory, two-dimensional general
solution in orthotropic magnetothermoelastic diffusion media is derived. On the basis of
general solution, the Green’s functions for a steady line on the surface of a semi-infinite
orthotropic magnetothermoelastic diffusion material are constructed by four newly introduced
harmonic functions. The components of displacement, stress, temperature distribution and
mass concentration are expressed in terms of elementary functions. From the present
investigation, some special cases of interest are also deduced and compared with the previous
results obtained. The resulting quantities are computed numerically for semi-infinite magneto
thermoelastic material and presented graphically to depict the effect of magnetic.

1. Introduction

Fundamental solutions or Green’s functions play an important role in both applied and
theoretical studied on the physics of solids. Fundamental solutions can be used to construct
many analytical solutions solving boundary value problems of practical problems when
boundary conditions are imposed. They are essential in boundary element method (BEM) as
well as the study of cracks, defects and inclusion. Many researchers have been investigated
the Green’s function for elastic solid in isotropic and anisotropic elastic media, notable among
them are Freedholm [1], Lifshitz and Rezentsveig [2], Elliott [3], Kroner [4], Synge [5] ,
Lejcek [6], Pan and Chou [7], and Pan and Yuan [8].

When thermal effects are considered, Sharma [9] investigated the fundamental solution
for transversely isotropic thermoelastic material in an integral form. Chen et al. [10] derived
the three dimensional general solution for transversely isotropic thermoelastic materials. Hou
et al. [11, 12] investigated the Green’s function for two and three-dimensional problem for a
steady Point heat source in the interior of a semi-infinite thermoelastic materials. Also, Hou
et.al [13] investigated the two dimensional general solutions and fundamental solutions for
orthotropic thermoelastic materials.

The theory of magnetothermoelasticity is concerned with the interacting effects of the
applied magnetic field on the elastic and thermoelastic deformation of a solid body. This
theory has drawn the attention of many researchers because of its extensive uses in diverse
fields, such as geophysics for understanding the effect of Earth’s magnetic field on seismic
waves, damping of acoustic waves in a magnetic field. Kolaski and Nowacki [14] studied the
magnetothermoelastic disturbance in a perfectly conducting elastic half-space in contact with
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vacuum due to applied thermal disturbance on the plane boundary. Othman and Song [15]
investigated Reflection of magnetothermoelastic waves with two relaxation times.
Hou et al. [16] investigated the general solution and fundamental solution for orthotropic
magnetothermoelastic materials.

Diffusion is defined as the spontaneous movement of the particles from a high
concentration region to the low concentration region and it occurs in response to a
concentration region and it occurs in response to a concentration gradient expressed as the
change in the concentration due to change in position. Thermal diffusion utilizes the transfer
of heat across a thin liquid or gas to accomplish isotope separation. Today, thermal remains a
practical process to separate isotopes of noble gases (e.g. xexon) and other light isotopes (e.g.
carbon) for research purpose.

Nowacki [17-20] developed the theory of thermoelastic diffusion by using coupled
thermoelastic model. Sherief et al. [21] developed the generalized theory of thermoelastic
diffusion with one relaxation time which allows finite speeds of propagation of waves. When
diffusion effects are considered, Kumar and Chawla [22] investigated the fundamental
solution in orthotropic thermoelastic diffusion material. Kumar and Chawla [23] studied the
Green’s functions for two-dimensional problem in orthotropic thermoelastic diffusion
material. Kumar and Chawla [24] derived the three-dimensional fundamental solution in
transversely isotropic thermoelastic diffusion media. However, the important fundamental
solution for two-dimensional problem in magnetothermoelastic material with mass diffusion
has not been discussed so far in the literature.

The Green’s functions for two-dimensional problem in  orthotropic
magnetothermoelastic diffusion medium are investigated in this paper. Based on the two-
dimensional general solution of orthotropic magnetothermoelastic diffusion media, the
Green’s functions for a steady line heat source on the surface of a semi-infinite
magnetothermoelastic diffusion material are obtained by four newly introduced harmonic
functions. From the present investigation, some special cases of interest are also deduced.

2. Basic equations
Following Ezzat [25], the simplified linear equations of electrodynamics of slowly moving
medium for a homogeneous and perfectly conducting elastic solid are given by

oE
curlh=J+¢,—, 1
0t (D
oh
CUrlE = —pu, —, 2
Hy ot (2)
ou
E=—u | —xH, |, 3
ﬂo(atx oj (3)
divh =0, 4)

where H, is the external applied magnetic field intensity vector, h is the induced magnetic
field vector, E is the induced electric field vector, J is the current density vector, U is the
displacement vector, 4, and ¢, are the magnetic and electric permeabilities respectively.

The above equations (1)-(4) are supplemented by equations of motion and constitutive

relations in the theory of generalized thermoelastic diffusion, taking into account the Lorentz
force (Eringen [26]).
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(i) Constitutive relations:
O = CijmEim + ;T +b;C, Q)

ijkm
(ii) Equations of motion:

Cijkm€km,j T & T.j +b;;C j + F = A, (6)
(iii) Equation of heat conduction:

pCeT +aT,C —ayTos; = K Tjj, (7)
(iv) Equation of mass diffusion:

—(Zij bkmgkm,ij —(Zij bC,ij—i-aij aT,ijZ—C. (8)

Here, Cyy, (= Cypij = Cjim = Cyjmi ) are elastic parameters, a;(=a; ), b;(=bj) are, respectively,

jikm
the tensors of thermal and diffusion modules, p is the density and C; is the specific heat at
constant strain, a,b are, respectively, coefficients describing the measure of thermoelastic
diffusion effects and diffusion effects, T, is the reference temperature assumed to be such that

Ui +U;;

T

0
conductivity, stress and strain tensor respectively, T(X, Y, z,t) is the temperature change from

<1, Ky(=Ky),04(=0;) and g = denote the components of thermal

the reference temperature T, and C 1is the mass concentration, U; are components of

displacement vector, a; (= a;) are diffusion parameters, F, are components of Lorentz force.
In the above equations symbol (*,”) followed by a suffix denotes differentiation with

respect to spatial coordinate and a superposed dot (“.””) denotes the derivative with respect to
time respectively.

3. Formulation of the problem
We consider homogenous orthotropic magnetothermoelastic diffusion medium. Let us take
Oxyz as the frame of reference in Cartesian coordinates, the origin O being any point on the
plane boundary.

For two-dimensional problem, we assume the displacement vector, temperature change
and mass concentration are, respectively, of the form

u=(u,0,w), T(x,z,1), C(x,z,1), 9)

and Lorentz force is taken in the form (for two dimensional problem):

o’u

oe
F,=u,H,; (5~ 6ok 5 (10a)

oe o’'w
F, =#0H§(5—5oﬂo?), (10b)



A study of Green'’s functions for two-dimensional problem... 81
where

ou ow
= +

e=—+—.
OoX 02

Moreover, we are discussing static problem

ou_ow _oC _oT

o2 ). 11
o4 ot ot ot ()

We define the dimensionless quantities as:

(x', Z,,U'W’) =ﬂ(x, z,u,w), (T',C" =i(a1T,b1C),
vV

1 11

' G Vv,

oy =——, H'= -H,
alTO CllKla)l
where
+ aC
vl =b,, @ =—K“ s (12)
1

and b, is the tensor of diffusion modules and K, is the component of thermal conductivity.

Equations (5)-(8) for orthotropic materials, with the aid of Egs. (9)-(12), after
suppressing the primes, yields:

0’ 0’ 0’ a) [a}_
S —5+08,—5 u+| S w-|— |C—| = [T =0, 13
Lox’ 2822j ( 35mazj (8x OX (13)
0’ 0’ 0’ 0 (a}
) U+| 8, —5+0,—5 W-&|—|C—&,| — [T =0, 14
3axaz] [ ? ox’ 4622] l(az) oz (14

& )
[&JT R S(GTJT _o, (15)

o .08 .0 o .o0* .0 L0 L0 L0 L0
—| 0 —+0;,— |U+—| 0, —+0,— [W—| Q, +0,— |C+| 4, —+0,— |T =0,

ox\ " ox? o7’ oz\ ~ ox? oz’ e 0o ox* o7’
(16)
where
H; 1 . b
51:14"”0—0’ (52,53,54)=C_(C55, C13+C55+/UOH§(01’C33+/10H§)’ gl:b_3’

11 11

=
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a K . o - ey
>, 83:_3’ (qlaqz)zm(bpbs)’ (q3 q4):M(bl,b3),

& =—
al Kl 11 11

* * a)*b * * * * aa)* * *
(.0 ==(a),a; ), (.0 ="(r. ;).
bl a'l
The equations (13)-(16) can be written as
D{u,w,C,T}' =0. (17)

where D is differential operator matrix given by

[ ]
2 2 2
5005 O 50 e o
oX oz oX0z OX oX
0? 0? 0? 0 0
P 5L 45,2 A _e, 2
G oxt Yot "oz > oz
LT A R T ) (Pl )
ox\ oxt ozt ozl Poxt ‘ozl “oxE 0 oax? Tox: " ax
0? 0?
_0 0 0 (W-’_‘%?j |
(18)

Equation (17) is a homogeneous set of differential equations in u, w,C, T . The general
solution by the operator theory as follows

u=AF, w=A,F, C=AF, T=AF, (i=1234) (19)

where A; are algebraic cofactors of the matrix D, of which the determinant is

ID|= [a* ;66 +b’ 8x?;z4 +c’ 8)((3;22 +d” 8ax6" JX (aaxzz +é&, ;22 j, (20)

where

a'=5,(5,0, = 8,05), b'=3,(6,0; —5,05) = 8,(8,0; + 8,05) + 6, (£,0, +6,0¢) — 47 (8, +6,6,) + 5,0,

C'=0,(£0; = 5,05) = 6, (5,0 +6,05) + 5,(8,05 —£,0,) + 8,0, = 5,0y = 8,0, d =-5,(5,0; +)).
The function F in equation (19) satisfies the following homogeneous equation:

ID|F =0. (21)
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It can be seen that if i=1,2,3 are taken in equation (19), three general solution are

obtained in which T =0 . These solutions are identical to those without thermal fact and are
not discussed here. Therefore if i =4 should be taken in equation (19), the following solution
is obtained

o 0’ o' \oF
u=\np o +q, !

+ )
oz*ox> ezt ) ox
W—p62+q o +r o \oF
Poxt Portoxt Cert)or’
8° 8° s 8°
=P e e T axéj':’
L0 . o° . 0 . 0°
T:(a 8z6+b 8246x2+c 8228X4+d axéjF, (22)

P =(4 =05)8,, 04 ==5(&0; +058,)+5,(0s + ;) +5,(a; + ) — &,

I ==0,(&,0s +&,0¢) + 6,05 + 5, (0 +05) + (0 +0g)J, +£,ds,

P, =8,(0s +0,) + 0 (&, —6) =6, (60; +&05), I, =—6,(&0 +&,0),

0, = =6,(6,05 +0e&,) = 8, (6,05 +6,0:) + 6, (0 +0g) + 05 (6, = &), Ps = (6,0, +6,04)5,,

Oy = 6,(8,05 +£,0,) + 6, (5,0, +,0;) + 8, (£,0, —6,05) — (6,8, +6,) + 5,0,

= 6,(8,05 +8,07) + 6,(6,0; = 5,0,) + (6,6, + ) = 6,(Q/ &, +0;) = 8,0;, |5 =56,(5,07 — ).

Equations (21) can be rewritten as

4 2 2
T % +2 |k =o. (23)
-1\ (OX™ OZ;
where
2,=5;2, S,= K
K

and s; (j=1,2,3) are three roots (with positive real part) of the following algebraic

equation:

a's®—b's*+c’s?—d" =0. (24)
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As known from the generalized Almansi theorem (Ding et al. [10]), the function F can
be expressed in terms of four harmonic functions:

() F=FR+F,+F+F, fordistinct s; (j=1,2,3,4); (25a)
(i) F=F +F,+F,+F, for s, #5, #5, =S, ; (25b)
(ili) F=F +F,+zF, + 2’F, for s, #5, =5, =5, ; (25¢)
(iv) F=F +zF, +2°F, +2’F, for s, =s, =S, =5, . (25d)

Here F; (]j=1,2,3,4) satisfies the following harmonic equation:

o?  o*
5+ [Fj=0  (j=1234). (26)
OX 621

The general solution for the case of distinct roots, can be derived as follows
: o°F, &L O°F
u=>yp , w=)> s.p, —, = , T=) p,—=> (27)
Z“axa‘* ;'2'&; ,Z;“aé ;44622

In the similar way general solution for the other three cases can be derived.
Equation (23) can be further simplified by taking

64

P az =y, (28)

Using the formula (23) in equation (22) gives

4 al// 4 al// 4 4 azl//
u=y —4 w=>»sP. —L C=>»P , T=) P, —2% 29
JZ_I: 8X ; j1j azj Jz 2j azz JZ_:, 34 622 ( )
where
Pij=p2j/Pij>  Poj=P3j/Pij>  Psa=Pas/Pra- (30)

The function y ; satisfies the harmonic equations:

2 2
(;X ;J%—o j=123,4. (1)

Making use of Egs. (9), (11) and (12) in equation (1) and after suppressing the primes, with
the aid of Eq. (29), we obtain:
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2

oy,

M-

O = (_ f,+ fls?Plj - f1P3j - flpzj)—za (32a)
i= j
4 R 52l//j
O-zz:Z(_ f2+hlsjplj_h2PSj_h3P2j)—27 (32b)
i=1 i
4 821//-
O 1+P. S-—J, 32¢
ZX JZ—I: ( J) Jaxazj ( )
where
Py =Py =P33 =0, (33a)
and
1 a;C; bsC
f., 0,0y, hahy)=——| € (,Cia,Caq,——L 3L o | 33b
(f1, 2,0y, hy,hs hy) al.l.o(ll 13-C33 a b 55 (33b)

Substituting the values of o,,,
Egs. (9), (11) and (12), gives

o, and o, from Eq. (32) in equations (6)-(7), with the aid of

f,—f,8]R, + ;P + f,P,; =h,(1+P,)s],
-, +h1312P11 —h,P;; —h,P,; =h,(1+PR)),
(1—(93sj?)P3j =0. (34)

The general solution (32) with the help of Eq. (34) can be simplified as

4 o’y 4 4 Oy
o, =-Y sw, —, w , =) sw, —> 35
XX JZ]: Iy 82? JZI: 1j 622 O JZ]: joj 6Xazj ( )

fl—P1'52f2+P3'f1+P2'fl 2
W1j= 17 52 ) ) :h4(1+P1j)=—f2+P1thSj—P3jh2—P3jh3. (36)
j

4. Green’s functions for a steady line heat source in a semi infinite orthotropic

magnetothermoelastic diffusion material
As shown in Fig. 1 we consider a semi-infinite orthotropic magnetothermoelastic diffusion
material z>0. A linear heat source H is applied at the line (0,h) in two dimensional
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Cartesian coordinate (X,z) and the surface z = 0 is free, impermeable boundary and thermally
insulated. The general solution given by equations (29) and (35) is derived in this section.
For future reference, following notations are introduced:

Zj=sjz, hi =skh, ij:Zj"'hk»

2 2 = — - .
Fjk =X + 2k Zik =zj—hg, Fik =X+ 75 (j.k=1,2,3,4). (37)

Fig. 1. Geometry of the problem.

Green’s functions in the semi-infinite plane are assumed of the following form:

1 _ = 3} - X
vi=A {E(Zﬁ- - Xz)(k’g g —gj‘xzﬂ tan 1(—___)}

ZJJ

1 3 ¢
+2Ajk {E(ka — Xz)(log M _E]_ijk tan 1(7)}, (38)

4
k=1 jk

where A; and A, (j,k=1,2,3,4)are twenty constant to be determined.

The boundary conditions on the surface (z = 0)are in the form of

oC

0z

072 =0 =0 —
’ oz

0, 0. (39)

Substituting the equation (38) in equations (29) and (35) gives the expressions for components

of displacement, mass concentration, temperature distribution and stress components as
follows:

4 4 4

_ - -1 X -1 X

UZ—ZAJ- X(logfjj —1)+ Zjj tan IT:I—ZZAjkI:X(logij —1)+Zjy tan 1Z— , (40a)
j=1k=1

j=1 Zjj jk
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4 4 4
- — -1 X -1 X
W:—ZSJ'PU'AJ' ij(logrjj —1)—Xxtan _—]+ Zzsjplejk{ij(logrjk —-1)—xtan = —|,
j=1

ST R P LIk
(40b)
4 4 4
C=ZP2jAj logTjj —Zzpszjk logrik, (40c)
j=1 j=1k=1
4
T= P34A4 log F44 + P34 Z A4k log 4k » (40d)
k=1
4 44
O == 2 ST Aj log T = D D sjwijAje logrk (309
4 4 4
Oy = ZWIJ'AJ' logfjj + ZZWIjAjk 10grjk, (401)
=1 j=1k=1
4 1 X g 1 X
O'zxz_zsjwlej tan~ ;_ZZSJWIJAJK tan P (40g)
i I joik= k

Considering the continuity on plane z =h for w and o,y gives the following expressions

4
D sjRjA;j =0, (41)
j=1
4
ZSlejAjZO. (42)
j=1

Substituting wy j from equation (36) in equation (42) yields

4
D sjhy 1+ Rj)A; =0. (43)
j=1

By virtue of equation (41), equation (43) can be simplified to

4
D sjAj=0. (44)
j=1
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When the mechanical, concentration and thermal equilibrium for a rectangle of aj <z<a,

(0<a;<h<ap) and — b <X<b are considered (Fig. 1), three equations can be obtained:

b a
J.[Uzz(x ay)—oz (X, al)]dx+_[[52x(b 7)— oz (-b z)}jz_
-b a

b
-3 I {—(X az)——(X al)}
-b

| t—..&"

5
[ E - al)}dxﬁ[@(b 0~ % (b fi-0
i

a
Some useful integrals are given as follows:
— _ _ 1, X
i
1, X
Z .
jk
oT 1 X 4 1 X
—dx=54P34| Agtan” ——+ » Ay tan  — |,
J. oz Z44 kZ:l

Z4k

4
oT P34 1 X 1 X
—dz=—""F| Agtan  —+ Agtan  — |,

S4 Z44 = Z4k

4
oC X -1 X
J.—dX AJSJPZJ tan~ a-ﬁ-ZAJkSJPZJ tan a,
k=1

4
oC Aj 4 X Aj _
[t Bipy ™t 2o B
Sj Zii o Si Z ik

oT — T . -
{&(b,z)—&(—b,z)}dz=

(45a)

(45b)

(45¢)

(46a)

(46b)

(46¢)

(46d)

(46e)

(46f)

It is noticed that the integrals (46d) and (46f) are not continuous atz =h, thus following

expression should be used

G- ] G ] e

(47a)
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a
! 8—Cd ! j (47b)

Substituting equations (40f) and (40g) into equation (45a) and using the integrals (46a) and
(46b), we obtain

ZWIJAJI1+ZW1]ZAJ|( 2= 0, (48)
- i-1 k=1

where
=7, x=b x=b 7%
_ X X
l=]| X(logT; =) +7Z; tan™ (=) —|| XlogT; +Z;; tan™ (=) =0, (49a)
Z. Z. _
i Joa |5 B Jxb ],
=8, | x=b 2
= [X(log r —1)+2, tan” (i)) - [Xlog G +2, tanl(i)] —0.  (49b)
z z.
ik /-7 = ik Jy— | _
I x=—pb 7=2

1

Equations (49a) and (49b) show that the equations (45a) and (48) are satisfied automatically.
Substituting the value of C from equation (40c) into equation (45c) and using the integrals
(46e), (461) and (47b), we obtain

4 4
ZP2J JJ Z Z Jk_ (50)
=1 j=1 k=1
where
z=a, x=b x=b " x=b "%
I =||s’tan”’ tan ™' (= tan”™' =
| = an (—) —|| tan (;) +|| tan" (—) =
i Jea | _ B Jx=b |, i S |
=2(s? -1)| tan™ —tan”' +27r
a —sjh s.a —S.h
and
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=2(s; —1)| tan™ —————tan"
s.a +s:h

Substituting equation (40d) into equation (45b) with the aid of s, =,/K; /K3 and integrals
(46¢) and (46d) and (47a), yields

4
H
Agls + ) Agle = —F—, (51
kzz‘{ P34/K3/K]
where
-3, x=b b z=h" p @
l=- {tan"l(_i)} — (tan_l(_i)j + [tan_l(_i)j =-2r, (52a)
“ Joa | Ly )y—p s “ Jx=b |
y x=b =% . R x=b
lg = (tan_l (—)J - [tan_l (—)] =0. (52b)
z = z _
4k Jx=—b - 4k J7=3, b
From equations (51) and (52), we obtain
H
Aj=r—————— (53)
27P34 /K3 /Ky
Equation (37) at the surface z = 0 gives
zj =0, hk =skh, Zjk =hg,

rjk=1[x2+h|f, Zjk =—hg, ijzﬂxz-i—hlf. (54)

Substituting equations (40c), (40d), (40f) and (40g) into equation (39) with the aid of
s, =+/K, /K, and equation (54), yields

4

—SlejAj—i-ZSlekAkj =0, (55)
k=1
4
w A+ D W, Ay =0, (56)
k=1

A —A, =0, A, =0, (57)
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4
PyA + ZsﬁpzkAkj =0, (58)
k=1

where j=1,2,3,4, k=1,2,3.
We have determined the twenty constants A; and A, (j,k=1,2,3,4) from twenty

equations including equations (41), (44), (50), (53), (55), (56), (57) and (58) by the method of
Crammer rule.

5. Special cases
(1) In case of negligible magnetic effect
Egs. (40a)-(40g) are reduced to

4

4 4
u=-> A {X(l"g Fj —D+Zjj tan”! -i} > D A {X(log rik —1)+2j tan™ i} (59a)

j=I Zi | Hia Zjk

4 4 4
- — -1 X -1 X
W:—ZSjPle{ij(logrjj—l)—Xtan _—}+ZZSjP1jAjk{ij(logrjk—1)—Xtan —],
j=1

AT ot 2k
(59b)
4 4 4
szpszj 10gFjj—ZZP2jAjklogI’jk, (59¢)
4
T= P34 A4 log I744 + P34 Z A4k 10g 4k » (59(1)
k=1
4 , 4 4 ,
Gxxz—ZSjwlej 1°gFjJ_ZZSjWIJAJ'k logrik, (59e)
4 4 4
Gzzzzwlej logTj +ZZW1jAjk logrik., (599)
4 X 4 4 X
o, =—Zst1jAj tan” —__ZZSjWIjAjk tan~ —, (59¢)
j=1 ij j=1 k=1 jk
which are similar to the results as those obtained by Kumar and Chawla [22].
(11) In the absence of magnetic and diffusion effect
Egs. (40a)-(40g) are reduced to
3 1 X
u=-> A x(logr; 1)+ z; tan™ —|, (60a)

j=1 Zj
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3
w=YsP,A/z;(logr; — 1)~ xtan™ > | (60b)
j=1 Z;
T=AP,logr, (60c)
2 2
O =—D. 5w, A logr,, (60d)
j=1
3
o, = WA logr,, (60¢)
j=1
3 X
Oy == SW,; A tan — (601)
j=1 j
The above results are similar to the results obtained by Hou et al. [13].
6. Numerical results and discussion
For the purpose of numerical computation, we take the following values of the relevant
parameters as:
¢, =18.78x10" Kgm™s?, c,; =80x10" Kgm™s?, cy; =10.2x10" Kgm™s?,
c,s =10.06x10"° Kgm's?, T,=0.293x10°K, @ =2.98x10°K", a,=24x10"K",
a, =1.1x10" m’Kg™', K,=0.12x10°W m™'K™, K,=0.33x10°W m'K™",
a=1.4x10" m’s?K™, b=9x10° Kg~'m’s>, a’ =0.95x10" m~s Kg,
a; =0.90x10°* m>sKg, H,=038 g =1
a =0, +Cia;, &, =Cj;a +Cp305, b, =c¢,a, +C 0, b, = ¢, +Cp0x;.

Figures 2-5 depict the variation of horizontal displacement (u), vertical displacement
(w), temperature distribution (T) and mass concentration (C) w.r.t x. The solid line and
dotted line correspond to thermoelastic diffusion (TD) and centre symbol on these lines
correspond to magnetothermoelastic diffusion (MTD).

Figure 2 depicts the variation of horizontal displacement U with x and it indicates that
the values of u increases for all values of x in both cases TD and MTD. It is noticed that the
values of u in case of TD remain more (in comparison with MTD). Figure 3 shows that the
values of vertical displacement W slightly decrease for smaller values of x, whereas for
higher values of x the values of w oscillates. It is evident that the values of w in case of MTD
remain more for smaller values of x although for higher values of x reverse behavior occurs.
Figure 4 exhibits the variation of temperature distribution T with x and it indicates that the
values of T slightly increases for smaller values of x whereas for higher values of x, the
values of T increases monotonically. It is noticed that the values of T in case of MTD
remain more (in comparison with MTD) for higher values of x. Figure 5 shows that the
values of mass concentration C slightly decrease for smaller values of x, although for higher
values of x the values of C increase. It is evident that the values of C in case of TD remain
more (in comparison with MTD) for higher values of x.
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Fig. 2. Variation of horizontal displacement w.r.t. X.
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Fig. 3. Variation of vertical displacement w.r.t. X.
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Temperature distribution
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Fig. 4. Variation of température distribution w.r.t. X.

Mass concentration
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Fig. 5. Variation of mass concentration w.r.t. X.
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7. Concluding remarks

The Green’s functions for two-dimensional in orthotropic magnetothermoelastic diffusion
material have been derived. By virtue of the two-dimensional general solution of orthotropic
magnetothermoelastic diffusion material, the Green functions for a steady line heat source on
the surface of a semi-infinite plane are obtained by four newly introduced harmonic functions
w; (1=1,2,3,4). The general expression for components of displacement, stress, mass

concentration and temperature change are expressed in terms of elementary functions. Since
all the components are expressed in terms of elementary functions, it is convenient to use
them. From the present investigation, some special cases of interest are also deduced and
compared with the previous results obtained. The components of displacement, mass
concentration and temperature distribution are computed numerically and depicted graphically
to depict the effect of magnetic.
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