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Abstract. The present investigation deals with the study of Green’s functions for two-
dimensional problem in orthotropic magnetothermoelastic media with mass diffusion. After 
applying the dimensionless quantities and using the operator theory, two-dimensional general 
solution in orthotropic magnetothermoelastic diffusion media is derived. On the basis of 
general solution, the Green’s functions for a steady line on the surface of a semi-infinite 
orthotropic magnetothermoelastic diffusion material are constructed by four newly introduced 
harmonic functions. The components of displacement, stress, temperature distribution and 
mass concentration are expressed in terms of elementary functions. From the present 
investigation, some special cases of interest are also deduced and compared with the previous 
results obtained. The resulting quantities are computed numerically for semi-infinite magneto 
thermoelastic material and presented graphically to depict the effect of magnetic. 
 
 
1. Introduction 
Fundamental solutions or Green’s functions play an important role in both applied and 
theoretical studied on the physics of solids. Fundamental solutions can be used to construct 
many analytical solutions solving boundary value problems of practical problems when 
boundary conditions are imposed. They are essential in boundary element method (BEM) as 
well as the study of cracks, defects and inclusion. Many researchers have been investigated 
the Green’s function for elastic solid in isotropic and anisotropic elastic media, notable among 
them are Freedholm [1], Lifshitz and Rezentsveig [2], Elliott [3], Kröner [4], Synge [5] , 
Lejcek [6], Pan and Chou [7], and Pan and Yuan [8]. 

When thermal effects are considered, Sharma [9] investigated the fundamental solution 
for transversely isotropic thermoelastic material in an integral form. Chen et al. [10] derived 
the three dimensional general solution for transversely isotropic thermoelastic materials. Hou 
et al. [11, 12] investigated the Green’s function for two and three-dimensional problem for a 
steady Point heat source in the interior of a semi-infinite thermoelastic materials. Also, Hou 
et.al [13] investigated the two dimensional general solutions and fundamental solutions for 
orthotropic thermoelastic materials. 

The theory of magnetothermoelasticity is concerned with the interacting effects of the 
applied magnetic field on the elastic and thermoelastic deformation of a solid body. This 
theory has drawn the attention of many researchers because of its extensive uses in diverse 
fields, such as geophysics for understanding the effect of Earth’s magnetic field on seismic 
waves, damping of acoustic waves in a magnetic field. Kolaski and Nowacki [14] studied the 
magnetothermoelastic disturbance in a perfectly conducting elastic half-space in contact with 
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(i) Constitutive relations: 
 

,Cbac ijijkmijkmij             (5) 

 
(ii) Equations of motion: 
 

,,,, iijijjijjkmijkm uFCbTaec          (6) 

 
(iii) Equation of heat conduction: 
 

,,00 ijijijijE KaCaC             (7) 

 
(iv) Equation of mass diffusion: 
 

.,, **
,

* CabCb ijijijijijkmkmij
           (8) 

 
Here, )( ijmkjikmkmijijkm cccc   are elastic parameters, ),( jiij aa  )( jiij bb   are, respectively, 

the tensors of thermal and diffusion modules,   is the density and EC  is the specific heat at 

constant strain, ba,  are, respectively, coefficients describing the measure of thermoelastic 

diffusion effects and diffusion effects, 0T  is the reference temperature assumed to be such that 
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T
( ), ( )ij ji ij jiK K     and 

2
,, ijji

ij

uu 
  denote the components of thermal 

conductivity, stress and strain tensor respectively, ),,,( tzyxT  is the temperature change from 

the reference temperature 0T  and C  is the mass concentration, iu  are components of 

displacement vector, )( **
jiij    are diffusion parameters, iF  are components of Lorentz force. 

In the above equations symbol (“,”) followed by a suffix denotes differentiation with 
respect to spatial coordinate and a superposed dot (“.”) denotes the derivative with respect to 
time respectively.  

 
3. Formulation of the problem 
We consider homogenous orthotropic magnetothermoelastic diffusion medium. Let us take 
Oxyz as the frame of reference in Cartesian coordinates, the origin O being any point on the 
plane boundary. 

For two-dimensional problem, we assume the displacement vector, temperature change 
and mass concentration are, respectively, of the form  

 
( ,0, ),u wu   ),,,( tzx   ),,( tzxC ,       (9) 

 
and Lorentz force is taken in the form (for two dimensional problem): 
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The equations (13)-(16) can be written as 
 

  .0,,, tTCwuD                      (17) 
 
where D is differential operator matrix given by 
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Equation (17) is a homogeneous set of differential equations in , , ,u w C T . The general 
solution by the operator theory as follows 

 

1 2 3 4, , , , ( 1, 2, 3, 4)i i i iu A F w A F C A F T A F i                   (19) 

 
where ijA  are algebraic cofactors of the matrix D, of which the determinant is 
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where 
 

* * * * * * * * * * * *
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The function F  in equation (19) satisfies the following homogeneous equation: 
 

.0FD                       (21) 
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As known from the generalized Almansi theorem (Ding et al. [10]), the function F  can 
be expressed in terms of four harmonic functions: 
 
(i) 4321 FFFFF   for distinct ( 1, 2, 3, 4)js j  ;              (25a) 

 
(ii) 4321 zFFFFF   for 1 2 3 4s s s s    ;              (25b) 
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Here ( 1, 2,3, 4)jF j   satisfies the following harmonic equation: 
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The general solution for the case of distinct roots, can be derived as follows 
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In the similar way general solution for the other three cases can be derived. 
Equation (23) can be further simplified by taking 
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Using the formula (23) in equation (22) gives 
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where 
 

.,, 144434132121 ppPppPppP jjjjjj                  (30) 

 
The function j  satisfies the harmonic equations: 
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Making use of Eqs. (9), (11) and (12) in equation (1) and after suppressing the primes, with 
the aid of Eq. (29), we obtain: 
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Cartesian coordinate ),( zx  and the surface 0z  is free, impermeable boundary and thermally 
insulated. The general solution given by equations (29) and (35) is derived in this section. 

For future reference, following notations are introduced:  
 

,,, kjjkkkjj hzzhshzsz   
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                                                                       b   O                   b  
                                                                                                                  

                                                                                   

hhhhhhhhh         

             ),0( h a   

             H       

                                                                                           

 

 

 
Fig. 1. Geometry of the problem. 

 
Green’s functions in the semi-infinite plane are assumed of the following form: 
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where jA  and ( , 1, 2, 3, 4)jkA j k  are twenty constant to be determined.  

The boundary conditions on the surface )0( z are in the form of 
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Substituting the equation (38) in equations (29) and (35) gives the expressions for components 
of displacement, mass concentration, temperature distribution and stress components as 
follows: 
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When the mechanical, concentration and thermal equilibrium for a rectangle of 21 aza   

)0( 21 aha   and bxb   are considered (Fig. 1), three equations can be obtained: 
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Some useful integrals are given as follows: 
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It is noticed that the integrals (46d) and (46f) are not continuous at hz  , thus following 
expression should be used 
 

,
2

1

2

1

dz
x

T
dz

x

T
dz

x

T
a

h

h

a

a

a
















                  (47a) 

88





 

2 1 1

2 1

2( 1) tan tan .j
j j j j

b b
s

s a s h s a s h
 

 
   

   
   

 

Substituting equation (40d) into equation (45b) with the aid of 314 / KKs   and integrals 

(46c) and (46d) and (47a), yields 
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From equations (51) and (52), we obtain 
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Equation (37) at the surface 0z  gives 
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Substituting equations (40c), (40d), (40f) and (40g) into equation (39) with the aid of 

314 / KKs   and equation (54), yields 
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The above results are similar to the results obtained by Hou et al. [13]. 
 
6. Numerical results and discussion 
For the purpose of numerical computation, we take the following values of the relevant 
parameters as: 

10 -1 -2
11c 18.78 10  Kg m s  ,  10 -1 -2

13c 8.0 10  Kg m s  , 10 -1 -2
33c 10.2 10  Kg m s  , 

10 -1 -2
55c 10.06 10  Kg m s  , 3

0 0.293 10T K  , 5 1
1 2.98 10 K    , 5 1

3 2.4 10 ,K     
4 3 1

1 1.1 10c m Kg    , 3 1 1
1 0.12 10K W m K   ,  3 1 1

3 0.33 10K W m K   , 
4 2 2 11.4 10a m s K   ,  5 1 5 29 10b Kg m s   ,    * 8 3

1 0.95 10 m s Kg    , 
* 8 3
3 0.90 10 m s Kg    , 0 00.38, 1H  
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Figures 2-5 depict the variation of horizontal displacement )(u , vertical displacement

)(w , temperature distribution )(T  and mass concentration )(C  w.r.t .x  The solid line and 
dotted line correspond to thermoelastic diffusion (TD) and centre symbol on these lines 
correspond to magnetothermoelastic diffusion (MTD). 

Figure 2 depicts the variation of horizontal displacement u  with x  and it indicates that 
the values of u  increases for all values of x in both cases TD and MTD. It is noticed that the 
values of u  in case of TD remain more (in comparison with MTD). Figure 3 shows that the 
values of vertical displacement w  slightly decrease for smaller values of ,x  whereas for 
higher values of x the values of w  oscillates. It is evident that the values of w  in case of MTD 
remain more for smaller values of x  although for higher values of x  reverse behavior occurs. 
Figure 4 exhibits the variation of temperature distribution T  with x  and it indicates that the 
values of T  slightly increases for smaller values of x  whereas for higher values of x , the 
values of T  increases monotonically. It is noticed that the values of T  in case of MTD 
remain more (in comparison with MTD) for higher values of .x  Figure 5 shows that the 
values of mass concentration C  slightly decrease for smaller values of ,x  although for higher 
values of x  the values of C  increase. It is evident that the values of C  in case of TD remain 
more (in comparison with MTD) for higher values of .x  
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Fig. 4. Variation of temperature distribution w.r.t. x. 
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Fig.5 variation of mass concentration w.r.t. x
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Fig. 5. Variation of mass concentration w.r.t. x. 
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7. Concluding remarks 
The Green’s functions for two-dimensional in orthotropic magnetothermoelastic diffusion 
material have been derived. By virtue of the two-dimensional general solution of orthotropic 
magnetothermoelastic diffusion material, the Green functions for a steady line heat source on 
the surface of a semi-infinite plane are obtained by four newly introduced harmonic functions 

( 1, 2, 3, 4)j j  . The general expression for components of displacement, stress, mass 

concentration and temperature change are expressed in terms of elementary functions. Since 
all the components are expressed in terms of elementary functions, it is convenient to use 
them. From the present investigation, some special cases of interest are also deduced and 
compared with the previous results obtained. The components of displacement, mass 
concentration and temperature distribution are computed numerically and depicted graphically 
to depict the effect of magnetic. 
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