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Abstract. Metal matrix composites (MMCs) are attracting considerable interest worldwide 
because of their superior mechanical and tribological properties. This investigation presents 
the use of Taguchi method for minimizing the specific wear and coefficient of friction in red 
mud based aluminum MMC. Response Surface Methodology (RSM) is also employed to 
develop mathematical model for specific wear rate and coefficient of friction. A plan of 
experiments, based on L27 Taguchi design method, the orthogonal array, signal- to- noise 
ratio, and analysis of variance (ANOVA) are employed to investigate the influence of 
parameters like applied load, sliding velocity, % of reinforcement and hardness of the 
counterpart material. Pin on Disc apparatus is used to conduct the experiment to analyze the 
effect of input parameters on output performance characteristics. From the analysis of signal 
to noise ratio (S/N) and ANOVA, the optimal combination levels and the effect of input 
parameter on output response are obtained. RSM is employed to develop mathematical model, 
capability of the model is good in prediction of results and results are very closer to the 
measured value. Analysis of variance (ANOVA) technique is applied to check the validity of 
the developed model. The result stress that the developed model could be effectively 
employed to predict the specific wear rate and the coefficient of friction.  
 
 
1. Introduction  
Aluminum metal matrix composites have been of interest as engineering materials because of 
their higher stiffness and specific strength, as well as superior wear resistance, compared to 
unreinforced aluminum alloys [1]. Superior mechanical and physical properties leads to the 
use of these composites in several automobile and engineering components where wear, tear 
and seizure are the major problems in addition to the weight saving. Some of these 
components are brake drums, pistons, connecting rods, cylinder heads and drive shafts for 
automobile sectors and impellers, agitators, turbine blade, valves, pump inlet, vortex finder 
for marine and mining sectors [2]. Particulate metal matrix composites (PMMCs) are of 
special interest owing to the low cost of their raw materials and their ease of fabrication, 
making them suitable for applications requiring relatively high volume production [1]. The 
most interesting materials commercially utilize SiC, Al2O3 or B4C particles incorporated into 
the aluminum matrix by a variety of processes including powder metallurgy [3]. Powder 
metallurgy processing of aluminum MMCs first requires the combination of the aluminum 
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alloy powder, either as a mixture of elemental and master alloy powders or in pre alloyed 
form, with the reinforcement in a blending process [4]. Among the different reinforcement 
material, red mud emerging reinforcement because of its low cost and availability in huge 
quantity. Red mud emerges as the major waste material during production of alumina from 
bauxite by the Bayer’s process [5]. The estimated annual rate of production of red mud from 
Bayer’s process is nearly 30 million ton per year. While using a powder metallurgy technique 
for fabrication of MMC, best mechanical properties can be attained since reinforcement 
materials are homogenously distributed over the matrix material [6]. In addition to that, in this 
process low temperature is used for fabrication when compared to melting process thus it 
avoids chemical reaction between the matrix and reinforcement material [7]. Another 
advantage of powder metallurgy technique is in its ability to manufacture near net shape 
products at low cost and give good dimensional tolerance for the complex geometries [8].  

In this context, it is required to characterize red mud based aluminum composites in 
terms of wear under different experimental conditions. Sliding wear behavior of Aluminum 
Metal Matrix Composites (AMCs) has been studied by many investigators [9] however, 
limited attempts have been made to study the effect of red mud in aluminum matrix.  It has 
been reported that the wear resistance of composite increases with increase in volume fraction 
and size of the dispersoids [10]. One of the prime factors of the improvement in wear 
resistance is increased in hardness of the Al-alloy due to the addition of hard dispersoids [11]. 
The hardness of the composite increases with increase in the volume fraction of the dispersoid 
but at the same time its toughness decreases [12]. The increase in volume fraction of alumina 
in aluminum alloy 7075 matrix increase the wear resistance of the composites [13]. It is 
reported that the, tribological properties of Al-Si alloy – graphite under 30-1 % relative 
humidity and found that the specific wear rate and coefficient of friction increased more than 
the base alloy material [14]. 

There have been few dry sliding wear behavior studies based on various reinforcements 
like SiC, Al2O3, fly ash and Zircon. The principle tribological parameters that control (load, 
sliding velocity, sliding distance, counterpart material, weight % of reinforcement, shape, and 
size) specific wear rate and coefficient of friction were analyzed [15].  

From the literature it is understand that, the relationship between the parameters in dry 
sliding wear is complex and independent, selection of the optimal parameter of combination is 
important to reduce specific wear rate and coefficient of friction. Design of experiment, 
Genetic algorithm and response surface method is widely used to optimize the dry sliding 
parameters [16].   

There has been experimental investigation using Taguchi and ANOVA to identify the 
significant factors while testing with Al 2219 SiC and Al 2219 SiC – graphite material shows 
that the sliding distance, sliding velocity and load are having significant effect [17]. Set of 
experiments conducted by a combining orthogonal arrays and ANOVA techniques to study 
the tribological behavior of Al-2014 alloy-10 wt.% SiC composites. It is found that the 
introduction of SiC particle reinforcement in the matrix alloy exerted the greatest effect on 
abrasive wear, followed by the applied load. The sliding distance is found to have a much 
lower effect [18]. 

It is observed that the wear resistance is strongly dependent on the sliding velocity and 
the hardness of the counter materials. A counter material with a lower hardness reduced the 
wear resistance due to the mutual abrasion between the counter material and the wear surface 
of the specimen [19].  

Response surface method has been applied to evaluate dry sliding wear behavior of 
AA7075 aluminum-SiC composites produced by powder metallurgy technique, it is found 
that the sliding velocity is directly proportional to wear rate and the particle size and volume 
fraction is inversely proportional  to wear rate [20]. It is inferred that the effect of load is 
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significant for aluminum -10% alumina composite using factorial design of experiment 
method. Also, the combined effect of abrasive size and sliding distance caused not only 
increased wear of matrix alloy but also helped to reduce the wear of composite [21].  

From the above literature review, it understood that the effect of different factors and 
their interactions on dry sliding wear behavior of MMCs is studied extensively. However, 
most of the reported research works focused on the effect of either one factor or two factors 
on dry sliding wear behavior of MMCs. There is no systematic study has been reported so far 
incorporating various factors that influence the dry sliding wear behavior of MMCs. Hence, 
the present investigation has been carried out to  optimize the wear parameters and to develop 
a mathematical model to predict the dry sliding wear rate of red mud based aluminum  metal 
matrix composite material fabricated by powder metallurgy technique incorporating the 
effects of applied load, sliding velocity, weight % of reinforcement, and counterpart materials.  

2. Methods of analysis  
2.1 Response surface methodology. Response surface methodology is practical, 

economical and relatively easy to use. It is the combination of statistical and mathematical 
techniques useful for developing and optimizing the process. It is commonly applied in 
situations where several input potentially influence the output (response) of interest. Response 
methodology is generally used to explain the relationship between response factor and 
independent factor. For this reason, it is very important to define the response and 
independent factor. The selection of control factors for dry sliding wear of the composites can 
be attempted based on a basic understanding of the process and from the literature. A lot of 
factors have an effect on the specific wear rate and coefficient of friction but all of these 
factors could not be considered because the number of experiments would increase 
exponentially. Therefore, the number of independent factors is limited to four in order to 
reduce the number of experiments. 

The first step of RSM is to define the limits of the experimental domain to be explored. 
These limits are made as wide as possible to obtain a clear response from the model [22]. The 
applied load, sliding velocity, weight % of reinforcement and different hardness counterpart 
material are selected variables for this investigation. In the next step is the planning to 
accomplish the experiments by means of RSM using the Box-Behnken method. In many 
engineering fields, there is a relationship between an output variable of interest (y) and a set of 
controllable variables ( 1 2, ,..., nx x x ). The relationship between the wear control parameters 

and the responses is given as: 
 

1 2( , ,..., )ny f x x x   ,           (1) 
 
where   represents the noise or error observed in the response (y). If we denote the expected 
response to be 1 2( ) ( , ,..., )nE y f x x x   , then the surface represented by 
 

1 2( , ,..., )nf x x x  .            (2) 
 
Here   is called a response surface. The variables 1 2, ,..., nx x x  in Eq. (2) are called natural 

variables because they are expressed in natural units of measurement.  
In most RSM problems, the form of the relationship between the independent variables 

and the response is unknown; it is approximated. Thus, the first step in RSM is to find an 
appropriate approximation for the true functional relationship between response and the set of 
independent variables. Usually, a low-order polynomial in some region of the independent 
variables is employed. If the response is well modeled by a linear function of the independent 
variables, then the approximating function is the first order model: 
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0 1 1 2 2 ... k ky x x x          .          (3) 
 

If there is curvature in the system, then a polynomial of higher degree must be used, 
such as the second-order model then a polynomial of higher degree must be used, such as 
second order model: 
 

12
0 1 1

k k k k

i j jj j ij i jj j i j
y x x x x    

 
        ,       (4) 

 
where i = 1, 2,…., k-1 and j = 1, 2,…, k also i<j [23]. 

2.2 Taguchi method. A large number of experiments have to be carried out when the 
number of the process parameters increases. To solve this problem, the Taguchi method uses 
a special design of orthogonal arrays that helps to study the entire parameter space with only a 
small number of experiments. Taguchi’s techniques consist of an experimental plan to obtain 
information about the behavior of a process. 

Taguchi recommends analyzing the mean response for each run in the inner array, and 
he also suggests analyzing variation using an appropriately chosen signal-to-noise ratio (S/N). 
These S/N ratios are derived from the quadratic loss function and among the three, the 
following is “Lower – the – best” (Eq. (5)) is considered to be standard and widely applicable: 
 

 2
1 1

1
10 log

nS
N n i y
   ,           (5) 

 
where y is the average of observed data, s2 is the variation of y, n is the number of 
observations [24]. 

The optimal setting is the parameter combination that has highest S/N ratio. The 
statistical analysis of the data is performed by analysis of variance (ANOVA) to study the 
contribution of the factor and interactions and to explore the effects of each process on the 
observed value [25]. 

 
3. Experimental procedure 
In this work, powder metallurgy technique is used to fabricate MMC specimen, the raw 
material used for the study is aluminum powder with 99 % purity and average particle size in 
the range of 150 to 300 µm. Red mud was used as reinforcement material with composition of 
(Al2O3 - 16.8 %, SiO2 - 15.2 %, Fe2O3 - 33.8 %, Na2O3 - 11.87 %, CaO - 2.45 %, TiO2 -
 3.7 %, Mn - 1.2 %, P2O5 - 0.67 % and Zn - 0.018 %) and average particle size is in the range 
of 1.8 to 4 µm. The density of the aluminum and red mud are 2.7 and 3.2 g/cm3 respectively.  

To fabricate MMC, red mud is preprocessed; with the help of ball mill and it is sieved 
to get uniform particle size of the reinforcement material. Size of the red mud particle is 
measured by Malvern laser size analyzer. Figure 1 shows the average particle size of the red 
mud reinforcement material. Figure 2 shows SEM micrograph of the red mud powder.  

The required amount of aluminum and red mud particle are measured and then mixed in 
a planetary ball mill for 2 h under a constant speed of 150 rpm. For this purpose, four balls 
made of WC-Co with 80 g each are used. Ball to powder ratio 10:1 and liquid ethanol is used 
as a process control agent. Before green compaction process, the powder is dried in electric 
induction furnace at 100 ºC to remove the moisture content.  

Compacted specimens are obtained by pouring the required amount of powder into the 
die material and it is compressed uniaxially in the universal testing machine with load of 
300 kN. The required number of samples has been prepared for 3, 4 and 5 % of reinforcement 
materials. The green compacted specimens are sintered in electric induction furnace. The 
sintering is done at a temperature of 600 ºC and sintering time is maintained at 60 min.  
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Fig. 1. Average particle of the red mud reinforcement material. 
 

 
 

Fig. 2. SEM micrographs of red mud powder. 
 

The distribution of reinforcement in the fabricated specimen material is examined using 
Scanning Electron Microscope (SEM). For micro structural characterization, the test samples 
are polished with different mesh number of 800 and 1000 mesh emery sheets and then the 
killers’ reagent is used as etchant. The standard procedure is adopted to prepare the etchant 
using 1 volume part of hydrofluoric acid, 1.5 volume part of hydrochloric acid, 2.5 volume 
parts of nitric acid and 95 volume parts of water.  

The fabricated specimens are subjected to test the density and hardness. The density of 
the base aluminum alloy and composites are determined using Archimedes’s principle. The 
samples are precision weighted in an electronic balance (make: Shimadzu-TXC 623 L) to an 
accuracy of 0.0001 gm. Hardness tests are carried out on a Brinell hardness testing machine 
(Make: Saroj Hardness machine) using a load of 750 kg for 15 sec. Four measurements have 
been taken on different areas and the mean value is taken for each sample.  

The pin on disc is used to evaluate the specific wear rate and coefficient of friction 
response to the sliding contact surface of specimens as shown in the Fig. 3. Tests are 
conducted under dry sliding conditions as per the ASTM G 99-95. The pin is initially cleaned 
with acetone and weighed accurately using a digital electronic balance. This carried out 
applying normal load (10, 30, and 50 N) and for constant sliding distance 3000 m at different 
sliding velocities (2, 3 and 4 m/s).  
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Fig. 3. Photograph of the pin on disc apparatus. 
 

Totally three different hardness counterpart material is used to conduct the experiment 
with following specification. EN 32 with 58 and 60 hardness and alumina oxide with 62 HRC 
is used. At the end of the each test, the specimen is again weighed in the same balance after 
cleaning with acetone. The difference between the initial and final weights is a measure of 
slide mass loss. The mass loss is then converted into volume loss using the corresponding 
density values. The specific wear rate is calculated by converting volume less to sliding 
distance. The specific wear rate (Ws) is calculated using the following equation: 
 

m
F n LWs   ,             (6) 

 
where Ws is the specific wear rate,  is the mass loss,   is the density, n is the normal load 
and L the sliding distance. After the test, the sliding surface of test samples is observed by 
scanning electron microscopy (SEM).  
 
4. Design of experiments  

4.1 Taguchi analysis. In this study, four parameters are selected as control factors, and 
each parameter is designed to have three levels, denoted 1, 2, and 3. The experimental design 
is according to L27 (3^13) array based on Taguchi method. Based on the preliminary 
experimentation it is decided that four independent variables namely, load, sliding velocity, 
weight % of reinforcement and counterpart material could influence the magnitude of dry 
sliding. The sliding distance is kept constant at 3000 m for all the experimental runs. The 
levels of these factors chosen for the study are given in Table 1.  

The response variables to be studied are the specific wear rate and coefficient of 
friction. Experimental results of the specific wear rate and coefficient of friction with various 
parameters are shown in Table 2. From the experimental results, the S/N ratios for each 
experiment of L27 (3^13) is calculated by applying Eq. (5). The objective of using the S/N 
ratio as a performance measurement is to develop products and process insensitive to noise 
factor. Thus, by utilizing experiment results and computed values of the S/N ratios (Table 2), 
average S/N response ratio is calculated for specific wear rate and coefficient of friction. 
Table 3 and Figure 4 show average effect response table for specific wear.  
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Table 1. Independent variable and their level. 

Level 
Factors 

Load, N Sliding velocity, m/s % of reinforcement Counterpart material HRC 
1 10 2 3 58 
2 30 3 4 60 
3 50 4 5 62 

 
 
Table 2. Orthogonal array of Taguchi for wear and friction coefficient.  

Load 
in N 

Sliding 
velocity, 

m/sec 

% of 
reinforcement 

Disc 

Specific 
wear rate, 
mm3/N-m  

× 10-13 

S/N  
ratio 

Friction 
coefficient 

S/N  
ratio 

10 2 3 1 3.3659 -10.5420 0.489 6.2138 
10 2 4 2 6.269 -15.9440 0.365 8.7541 
10 2 5 3 8.2369 -18.3153 0.276 11.1818
10 3 3 2 7.9945 -18.0558 0.578 4.7614 
10 3 4 3 13.2156 -22.4217 0.385 8.2908 
10 3 5 1 15.2389 -23.6591 0.356 8.9710 
10 4 3 3 4.269 -12.6065 0.312 10.1169
10 4 4 1 13.567 -22.6497 0.392 8.1343 
10 4 5 2 11.289 -21.0531 0.295 10.6036
30 2 3 1 1.239 -1.8614 0.631 3.9994 
30 2 4 2 1.56 -3.8625 0.615 4.2225 
30 2 5 3 5.5216 -14.8413 0.315 10.0338
30 3 3 2 1.1236 -1.0122 0.685 3.2862 
30 3 4 3 15.259 -23.6705 0.4 7.9588 
30 3 5 1 10.5698 -20.4813 0.562 5.0053 
30 4 3 3 7.369 -17.3482 0.416 7.6181 
30 4 4 1 8.369 -18.4535 0.525 5.5968 
30 4 5 2 5.239 -14.3850 0.386 8.2683 
50 2 3 1 0.1139 18.8695 0.656 3.6619 
50 2 4 2 0.2149 13.3553 0.6 4.4370 
50 2 5 3 10.11569 -20.0999 0.395 8.0681 
50 3 3 2 0.99268 0.0638 0.615 4.2225 
50 3 4 3 10.2569 -20.2203 0.462 6.7072 
50 3 5 1 13.697 -22.7325 0.401 7.9371 
50 4 3 3 3.269 -10.2883 0.425 7.4322 
50 4 4 1 11.239 -21.0146 0.385 8.2908 
50 4 5 2 5.369 -14.5979 0.351 9.0939 

 
 

Regardless of category of the quality characteristic, a greater S/N ratio corresponds to a 
better performance. The level of a factor with the highest signal-to-noise ratio is the optimum 
level [26]. Therefore, the optimal parameter combination level identified for the present 
investigation in the process is load at level 3 (A3), sliding velocity at level 1 (B1), % of 
reinforcement at level 1 (C1) and disc material at level 2 (D2) for specific wear rate.  
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Table 3. Average experimental results and S/N response table for specific wear rate.  

Level A B C D 
1 -18.361 -5.916 -5.865 -13.614 
2 -12.880 -16.910 -14.987 -8.388 
3 -8.518 -16.933 -18.907 -17.757 

Delta 9.842 11.017 13.043 9.369 
Rank 3 2 1 4 

 
 

503010

-5

-10

-15

-20
432

543

-5

-10

-15

-20
321

A

M
ea

n 
of

 S
N 

ra
ti

os

B

C D

Main Effects Plot for SN ratios
Data Means

Signal-to-noise: Smaller is better
 

 
Fig. 4. Effect of wear parameters on specific wear rate. 

 
Based on the results of the S/N ratio and experimental, the optimal parameters for 

specific wear rate are obtained at 50 N applied load (level 3), 2 m/s sliding velocity (level 1), 
3 % of reinforcement (level 1) and 60 HRC counterpart material level (2).  

From Table 4 and Fig. 5, the optimum conditions for the coefficient of friction can be 
established. Based on the results of the S/N ratio and experimental results, the optimal 
parameters for coefficient of friction is obtained at 10 N applied load (level 1), 4 m/s sliding 
velocity (level 3), 5 % of reinforcement (level 3) and counterpart material (level 3).  

The purpose of the statistical ANOVA is to investigate which design parameter 
significantly affects the specific wear rate and coefficient of friction. Tables 5 and 6 show the 
results of the ANOVA analysis for the specific wear and coefficient of friction respectively. 
This analysis is carried out for a significance level of α = 0.05, i.e., for confidence level of 
95 %. Tables 5 and 6 show that the probability levels are the realized significance levels, 
associated with the F tests for each source of variation. The sources with a probability level 
less than 0.05 are considered to have a statistically significant contribution to the performance 
measures. Also, last columns of Tables 5 and 6 show the percentage of contribution of each 
source to the total variation, indicating the degree of influence on the result. From Table 5 it is 
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understand that the specific wear rate of the aluminum based red mud MMC are applied load 
L (10.8 %), sliding velocity (29. 2 %), % of reinforcements (39.9 %) and counterpart material 
(19.86 %). From the analysis of Table 6, it is inferred that the significant factor for coefficient 
of friction are MMC  applied load L (21.4 % ), sliding velocity (18.2 %), % of reinforcements 
(35.6 %) and counterpart material (24.7 %). 

 
 

Table 4. Average experimental results and S/N response table for coefficient of friction. 
Level A B C D 

1 8.559 6.73 5.701 6.423 
2 6.221 6.349 6.932 6.405 
3 6.650 8.351 8.796 8.601 

Delta 2.338 2.002 3.094 2.195 
Rank 2 4 1 3 
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Fig. 5. Effect of wear parameters on coefficient of friction. 
 
 

Table 5. ANOVA for specific wear rate. 
Source DF Seq SS Adj SS Seq MS F P % of contribution 

A 2 56.836 56.836 28.418 6.13 0.009 10.8 
B 2 152.709 152.709 76.355 16.48 0.000 29.2 
C 2 208.686 208.686 104.343 22.52 0.000 39.9 
D 2 103.637 103.637 51.819 11.18 0.001 19.86 

Error 18 83.392 83.392 4.633    
Total 26 26 605.260     

R-Sq = 86.22 %, R-Sq(adj) = 80.10 % 
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Table 6. ANOVA for Coefficient of friction. 

Source DF Seq SS Adj SS Adj MS F P 
% of 

contribution
A 2 0.072243 0.072243 0.036121 13.31 0.000 21.4 
B 2 0.061381 0.061381 0.030690 11.31 0.001 18.2 
C 2 0.120291 0.120291 0.060145 22.16 0.000 35.6 
D 2 0.083318 0.083318 0.041659 15.35 0.000 19.86 

Error 18 0.048846 0.048846 0.002714    
Total 26 0.386079      

R-Sq = 87.35 %, R-Sq(adj) = 81.72 % 
 
4.2 Correlation of optimum results with surface morphology of specimen. The 

optimized result can be correlated with SEM micrographs of the worn surface red mud based 
aluminum MMC composites.  

 

 
 

Fig. 6. Wear surface of 3 % of red mud reinforcement under the load of 50 N,  
sliding velocity 2 m/s and counterpart hardness 60 HRC. 

 
 

 
 

Fig. 7. Wear surface of 3 % of red mud reinforcement under the load of 50 N,  
sliding velocity 4 m/s and counterpart hardness 62 HRC. 
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Figure 6 SEM image shows the wear surface of the red mud based aluminum MMC 
tested at applied load 50 N, sliding velocity 2 m/s, 3 % of reinforcement and counterpart 
material hardness is 60 HRC. This micrograph shows numerous long grooves; fewer 
deformation and craters on wear surfaces. Figure 7 shows the wear surface of the red mud 
based aluminum MMC tested at applied load 50 N, sliding velocity 4 m/s, 3 % of 
reinforcement and counterpart material hardness is 62 HRC, leads to more particle pullout.  

4.3 Response Surface analysis. In analyzing the specific wear rate and coefficient of 
friction in wear tests, statistical models play an important role. These models are used for 
prediction of results. RSM’s design consisting of 29 experiments is calculated for developing 
the mathematical model for specific wear rate and coefficient of friction. Tables 7 and 8 give 
the model summary statistics for specific wear rate and coefficient of friction, respectively. 
These tables reveal that quadratic model is the best suggested model for specific wear rate and 
coefficient of friction. So, for further analysis, this model is used. 

 
Table 7. Model summary for specific wear rate. 

Source Std. Dev. R-Squared
Adjusted 

R-Squared
Predicted 
R-Squared

PRESS 

 Linear 3.215196 0.459131 0.368986 0.181142 375.6145 
2FI 3.417907 0.541584 0.286909 -0.39139 638.2368 

Quadratic 2.336927 0.83332 0.666639 0.093969 415.601 Suggested
Cubic 1.860095 0.954743 0.7888 -3.68297 2148.101 Aliased 

 
Table 8. Model Summary for coefficient of friction. 

Source Std. Dev. R-Squared 
Adjusted 

R-Squared 
Predicted 
R-Squared 

PRESS 
 

Linear 0.161883 0.430711 0.33583 0.114771 0.977993 
2FI 0.115067 0.784279 0.664433 0.315003 0.756779 

Quadratic 0.085009 0.908425 0.816851 0.530311 0.518908 Suggested
Cubic 0.100246 0.945423 0.745308 -4.89834 6.516436 Aliased 

 
The relative importance of the dry sliding parameters with respect to the specific wear 

rate and coefficient of friction is investigated to determine more accurately the optimum 
combinations of the wear parameters using ANOVA. Table 9 gives the ANOVA results for 
the response surface quadratic model for specific wear rate. The values of “Prob > F” in 
Table 9 for the model <0.1000 indicates that model terms are significant. In this case A, B, 
C, D, C2 and D2 are significant model terms. Other model terms can be said to be not 
significant. These insignificant model terms can be removed and may result in an improved 
model.  

From Table 9, the model F value of 4.99 indicates that the model is still significant. The 
values of Prob > F <0.1000 show that model terms are important. The R2 (0.83) value is high, 
close to 1, which is desirable. The predicted R2 (0.72) is in reasonable agreement with the 
adjusted R2. Adequate precision measures the S/N ratio. A ratio greater than 4 indicates 
adequate model discrimination. In this particular case, it is 10.39, which indicates an adequate 
signal. It is noted that interaction among wear parameters is insignificant, while the 
independent effects of dry sliding wear parameters are also significant. Therefore, applied 
load (A), sliding velocity (B), weight % of reinforcement (C), counterpart material (D) C2 and 
D2 are significant terms.  
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Table 9. ANOVA for Specific wear rate.  

Source 
Sum of 
squares 

df 
Mean 
square 

F 
value 

p-value 
Prob > F  

Model 382.2481 14 27.30343 4.999506 0.0024 significant
A-applied load 76.95356 1 76.95356 14.09089 0.0021 

 

B-sliding velocity 58.18124 1 58.18124 10.65351 0.0057 
C-% of reinforcement 49.22451 1 49.22451 9.013455 0.0095 

D-Hardness of the 
material 

26.24633 1 26.24633 4.805942 0.0458 

AB 1.0201 1 1.0201 0.18679 0.6722 
AC 0.375892 1 0.375892 0.068829 0.7969 
AD 7.3441 1 7.3441 1.344771 0.2656 
BC 7.7841 1 7.7841 1.425339 0.2524 
BD 7.570752 1 7.570752 1.386273 0.2587 
CD 13.72703 1 13.72703 2.513543 0.1352 
A^2 0.059107 1 0.059107 0.010823 0.9186 
B^2 5.223644 1 5.223644 0.956497 0.3447 
C^2 102.3209 1 102.3209 18.73588 0.0007 
D^2 19.83895 1 19.83895 3.632693 0.0774 

Residual 76.45716 14 5.461226
Lack of Fit 70.55072 10 7.055072 4.77788 0.0726 not 

significantPure Error 5.906445 4 1.476611
 
Table 10 ANOVA for coefficient of friction.  

Source 
Sum of 
squares 

df 
Mean 
square 

F 
value 

p-value 
Prob > F  

Model 1.00362 14 0.071687 9.920065 < 0.0001 significant
A-applied load 0.108376 1 0.108376 14.99707 0.0017 

 

B-Sliding velocity 0.1728 1 0.1728 23.91205 0.0002 
C-% of reinforcement 0.11167 1 0.11167 15.45286 0.0015 

D-Hardness of the 
material 

0.083 1 0.083 11.48558 0.0044 

AB 0.0121 1 0.0121 1.674397 0.2166 
AC 0.047437 1 0.047437 6.564307 0.0226 
AD 0.116281 1 0.116281 16.09096 0.0013 
BC 0.0196 1 0.0196 2.712247 0.1218 
BD 0.1936 1 0.1936 26.79036 0.0001 
CD 0.0016 1 0.0016 0.221408 0.6452 
A^2 0.016195 1 0.016195 2.241008 0.1566 
B^2 0.001512 1 0.001512 0.209205 0.6544 
C^2 0.075355 1 0.075355 10.42764 0.0061 
D^2 0.018232 1 0.018232 2.522943 0.1345 

Residual 0.101171 14 0.007226
Lack of Fit 0.085963 10 0.008596 2.260987 0.2243 not 

significantPure Error 0.015208 4 0.003802
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Table 10 gives the ANOVA for the response surface quadratic model for coefficient of 
friction. From Table 10, the model F value of 9.92 implies that the model is significant for 
coefficient of friction. The value of “Prob > F” for model is < 0.1000, which indicates, that 
the model terms are significant. In this case A, B, C, D, AC, AD, BD and C2 are significant 
model terms. There is only 0.01 % chance that a “model F value” this large could occur due to 
noise. The R2 (0.85) value is high, close to 1, which is desirable. The predicted R2 (0.79) is in 
reasonable agreement with the adjusted R2. Adequate precision measures the S/N ratio. A 
ratio greater than 4 indicates adequate model discrimination. In this particular case, it is 15.35, 
which indicates an adequate signal. Therefore, the model can be used to navigate the design 
space. 

The mathematical relationship for correlating output response to input parameters is 
calculated by Design Expert software version 8.01. The following equations are the final 
empirical model in terms of coded factors for specific wear rate (Y1) and coefficient of 
friction (Y2).  
 
Specific wear rate = 3.093 - 2.53 A - 2.2 B + 2.03 C -1.48 D + 1.35 AD - 1.39 BC + 1.85 CD-  
 
– 0.91 B2 + 3.95 C2 + 1.73 D2,          (7) 
 
Coefficient of friction = 0.497 – 0.095 A + 0.12 B – 0.09 C – 0.05 D – 0.11 AC + 0.17 AD + 
 
+0.22 BD + 0.04 A2 – 0.11 C2 + 0.05 D2.         (8) 

 
The normal probability plots of the residuals versus the predicted response for specific 

wear rate and coefficient of friction are shown in Figs. 8 and 9 respectively.  
 

 
 

Fig. 8. Residual plot for specific wear rate. 
 
Figures 8 and 9 revealed that the residuals generally fall on a straight line, implying that the 
errors are normally distributed. This implies that the models proposed are adequate, and there 
is no reason to suspect any violation of the independence or constant variance assumption 
[27]. 

From the developed RSM-based mathematical model, the effect of parameter on 
specific wear rate is examined. Figures 10, 11, and 12 show 3D graphs of specific wear rate as 
a function of dry sliding wear parameters.  
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Fig. 9. Residual plot for coefficient of friction. 
 

 
 

Fig. 10. 3D surface graph of specific wear rate as function of applied load and  
hardness of the counterpart material. 

 

 
 

Fig. 11. 3D surface graph of specific wear rate as function of sliding velocity and  
weight % of reinforcement. 
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From Fig. 10, it is observed that specific wear rate of the composites increases while 
increasing the applied load and hardness of the counterpart material at constant sliding 
velocity and weight % reinforcement. From Fig 11, it is understand that specific wear rate of 
the composites increases with increasing sliding velocity and % of reinforcement while 
keeping applied load and counterpart material at constant values. From Fig 12, it is inferred 
that specific wear rate increase while increasing the hardness of the material and sliding 
velocity. From Figs.13 and 14, the lowest coefficient of friction is obtained at lowest sliding 
velocity and hardness of the counterpart material. From Fig. 15, the coefficient of friction 
increases with increases in applied load and weight % of reinforcement.  

 
 

 
 

Fig. 12. 3D surface graph of specific wear rate as function of sliding velocity and 
 hardness of the counterpart material. 

 
 

 
 

Fig. 13. 3D surface graph of coefficient of friction as function of applied load and hardness of 
the counterpart material. 
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Fig. 14. 3D surface graph of coefficient of friction as function of sliding velocity and  
hardness of the counterpart material. 

 

 
 

Fig. 15. 3D surface graph of coefficient of friction as function of applied load and 
weight % of reinforcement. 

 
5. Conclusions 

This paper has presented an application of Taguchi method and response surface 
methodology for selecting the optimum combination values and mathematical model of dry 
sliding wear parameters affecting the specific wear rate and coefficient of friction in red mud 
based aluminum composites fabricated through powder metallurgy technique. The 
conclusions of this present study are drawn as follows:  

Taguchi method has been found as the most successful technique to perform trend 
analysis of the specific wear rate and the coefficient of friction with respect to various 
combinations of dry sliding wear parameters. S/N ratio is used to identify the optimal 
combination dry sliding wear parameters. The lowest specific wear occurs at high load, low 
sliding velocity, low % of reinforcement and medium level counterpart material hardness. The 
optimal level for the specific wear rate is A3, B1, C1 and D2. The optimal level for coefficient 
of fiction is A1, B3, C3 and D3. The results of ANOVA reveal that % of reinforcement is the 
main dry sliding parameters, which has greater influence on the specific wear rate and 
coefficient of friction. 
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RSM has been used to develop mathematical model for specific wear rate and 
coefficient of friction for various dry sliding wear parameters. The quadratic modes developed 
using RSM are reasonably accurate and can be used for prediction within the limits of the 
factors investigated. From RSM model and experiment results, the predicted and measured 
values are quite close, which indicates that the developed model can be effectively used to 
predict the specific wear rate and the coefficient of friction.  
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