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Abstract. The aim of the present paper is to study the wave propagation in anisotropic 
thermoviscoelastic medium in the context Green-Naghdi theories of type-II and type-III. It is 
found that there exist two quasi-longitudinal waves (qP, qT) and two transverse waves (qS1, 
qS2). The governing equations for homogeneous transversely isotropic thermoviscoelastic are 
reduced as a special case from the considered model. Different characteristics of waves like 
phase velocity, attenuation coefficient are computed from the obtained results. Viscous effect 
is shown graphically on different resulting quantities for Green-Naghdi theories of type-II and 
type-III. From the present investigation, some particular cases of interest are also deduced. 
 
 
1. Introduction 
The generalized theory of thermoelasticity is one of the modified versions of classical 
uncoupled and coupled theory of thermoelasticity. It have been developed in order to remove 
the paradox of physical impossible phenomena of infinite velocity of thermal signals in the 
classical coupled thermoelasticity. Hetnarski and Ignaczak [1] examined five generalizations 
of the coupled theory of thermoelasticity.  

The first generalization is due to Lord and Shulman [2] who formulated the generalized 
thermoelasticity theory involving one thermal relaxation time. This theory is referred to as 
L-S theory or extended thermoelasticity theory in the Maxwell-Cattaneo law replaces the 
Fourier Law of heat conduction by introducing a single parameter that acts as a relaxation 
time, who obtained a wave-type equation by postulating a new law of heat conduction instead 
of classical Fourier’s law. Green and Lindsay [3] developed a temperature rate- dependent 
thermoelasticity that includes two thermal relaxation times and does not violate the classical 
Fourier’s law of heat conduction, when the body under consideration has a center of 
symmetry.  One can refer to Hetnarski and Ignaczak [4] for a review and presentation of 
generalized theories of thermoelasticity. 

Chadwick [5] and Chadwick [6] discussed propagation of plane harmonic waves in 
transversely isotropic and homogeneous anisotropic heat conduction solids respectively. 
Banerjee and Pao [7] studied the thermoelastic waves in anisotropic solids. Four characteristic 
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wave velocities are found, three being analogous to those of isothermal elastic waves. The 
fourth wave, which is predominately a temperature disturbance, corresponds to the heat pulses 
known as second sound. Sharma [8] and Sharma et al. [9-10] investigated the thermoelastic 
waves in transversely isotropic material and cubic crystal and orthorhombic material 
respectively. Sharma et al. [11-12] studied the wave propagation in  anisotropic solids in 
generalized theory of thermoelasticity. Sharma [13] discussed the existence of longitudinal 
and transverse in anisotropic thermoelastic media. 

The third generalization of the coupled theory of thermoelasticity is developed by 
Hetnarski and Ignaczak [14] and is known as low-temperature thermoelasticity. This model is 
characterized by a system of non linear field equations. Low-temperature non linear models of 
heat conduction that predict wave like thermal signals and which are supposed to hold at low 
temperatures have also been proposed and studied in some works by Kosinski [15], Kosinski 
and Cimmelli [16]. 

The fourth generalization to the coupled theory of thermoelasticity introduced by Green 
and Naghdi and this theory is concerned with the thermoelasticity theory without energy 
dissipation, referred to as G-N theory of type II in which the classical Fourier law is replaced 
by a heat flux rate-temperature gradient relation. The heat transport equation does not involve 
a temperature rate term and as such this model admits undamped thermoelastic waves in 
thermoelastic material. The fourth generalization of the thermoelasticity theory involves a 
heat conduction law, which includes the conventional law and one that involves the thermal 
displacement gradient among the constitutive variables. This model is referred to as the G-N 
model III [17, 18], which involves dissipation in general and admits thermoelastic waves. 

The fifth generalization of the coupled theory of thermoelasticity is developed by 
Tzau [19] and Chandrasekhariah [20] and is referred to dual phase- lag thermoelasticity. 
Tzou [19] considered microstructural effects into the delayed response in time in the 
macroscopic formulation by taking into account that the increase of the lattice temperature is 
delayed due to phonon-electron interactions on the macroscopic level. A macroscopic lagging 
response between the temperature gradient and the heat flux seems to a possible outcome due 
to such progressive interactions. Tzou [19] introduced two phase lags to both the heat flux 
vector and the temperature gradient and considered constitutive equations to describe the 
lagging behavior in the heat conduction in solids. Raychoudhuri [21] has recently introduced 
the three-phase-lag heat conduction equation in which the Fourier law of heat conduction is 
replaced by an approximation to a modification of the Fourier law with the introduction of 
three different phase-lags for the heat flux vector, the temperature gradient and the thermal 
displacement gradient.  

Simonetti [22] investigated Lamb wave propagation in elastic plates coated with 
viscoelastic materials. Sharma [23] discussed the problem of Rayleigh-Lamb wave 
propagation in visco-thermoelastic plate. Baksi et al. [24] discussed the two-dimensional 
visco-elastic problems in generalized thermoelastic medium with heat source. Sharma et al. 
[25] investigated the Lamb wave’s propagation in viscothermoelastic plate under fluid 
loadings. Kumar and Partap [26] discussed the vibration analysis of wave micropolar 
thermoviscoelasic plate. Kumar and Devi [27] investigated the plane wave propagation in 
anisotropic thermoelastic medium in the context of Green-Naghdi theory type-II and type-III. 
Kumar and Chawla [28] discussed the plane wave propagation in anisotropic thermoelastic 
with three-phase-lag and two-phase-lag model.  

Keeping in view of these applications, we studied the propagation of waves in the 
context of Green-Naghdi theory type-II, for anisotropic thermoviscoelastic medium. As a 
special case, the basic equations for homogeneous transversely isotropic thermoviscoelasticity 
with Green-Naghdi theory type-II and type–III are reduced. Viscous effect is shown 



graphically on different characteristics of waves like phase velocities and attenuation 
coefficients. From the present investigation, some special cases of interest are also deduced. 

 
2. Fundamental equations 
The basic equations for homogeneous anisotropic thermoelastic solid, without body forces 
and heat sources are given as 

Constitutive relations 
 

Tec ijklijklij   ,  ,klijklij c          (1) 
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Equations of motion in the absence of body force 
 

ijij u , .           (3) 
 
The energy equation (without extrinsic heat supply) is 
 

0 , .i iST q              (4) 
 
The Fourier law (in the Green-Naghdi theory type-II and type-III) is given by 
Chandrasekharaiah (Chandrasekharaiah, 1998 [20]) as  
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In the above equations symbol (“,”) followed by a suffix denotes differentiation with respect 
to spatial coordinate and a superposed dot (“.”) denotes the derivative with respect to time  
respectively.  
 
3 Formulation of the problem   
We consider a homogeneous, thermally conducting, anisotropic viscoelastic solid in the 
undeformed state at the uniform temperature 0.T   

In order to account for the material damping behavior, the material coefficient ijklc  are 

assumed to be function of the time operator ,
t

D



  i.e. 
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Assumed that the viscoelastic nature of the material is described by the Voigt model of linear 
viscoelasticity (Kaliski [25]), we write 
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The general system of equations for anistropic thermoviscoelastic material are obtained by 
using equations (1), (2) and (5), in equations (3) and (4), and with the aid of equation (7), the 
equation of motion and heat conduction are: 



equations of motion 
 

ijkl kl, j ij , j ic e T u   .          (8) 
 

where ij ijkl klc   ; 

equation of heat conduction 
 

* *
ij , ji ij , ji ij 0 ijK T K T ( C T T e ) ,      
           (9) 

 

for Green-Naghdi theory of type-II .0ijK  

 
4. Solution of the problem  
For plane harmonic waves, we assume the solution of equations (8)-(9) of the form 
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where   is the circular frequency and   is the complex wave number. 321 ,, UUU  give the 

polarization of propagating wave and *T  is the amplitude of temperature distribution in the 
medium. The vector (cos sin ,sin sin ,cos )     n  is unit wave normal vector, defines the phase 
direction of the propagating wave represents the propagation along the general direction of 

),(   in Cartesian coordinate system ),,,( 321 xxx where   is the polar angle with 3x axis 

and   is azimuth with 1x -axis.  
Substituting equation (10) in equations (8)-(9), we obtain 
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where ik is the Kronecker delta.  

To facilitate the solution, following dimensionless quantities are introduced: 
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The Christoffel’s tensor notation may be expressed as follows 
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Using equations (13) and (14) in equations (11)-(12), we obtain 
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The non-trivial solution of the system of equations (15)-(16) is ensured by the determinant 
equation 
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where , 1, 2, 3, 4 ...16ia i  are given in Appendix A. The equation (17) yields to the 

following polynomial characteristics equation in   as 
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where the coefficient iA  1, 2, 3, 4, 5i   are given in Appendix A. 

On solving equation (18), we  obtain eight roots of   that is 1 2 3, ,     and 4  

corresponding to these roots, there exists four waves corresponding to descending order of 
their velocities namely a quasi P-wave (qP) and two quasi-transverse waves (qS1, qS2) and a 
quasi-thermal wave (qT).  

The expressions of phase velocities, attenuation coefficients of these types of waves are 
given in Appendix A. 

Transversely isotropic media. Applying the transformation: 
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where   is the angle of rotation in the 21 xx   plane, in the equations (8)-(9) and with the aid 
of equation (10) and (13), the basic equations for homogeneous transversely isotropic 
thermoviscoelastic for Green-Naghdi theories of type-II and III, we obtain 
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where 2
1 11v c ,  ; 1, 2, 3 ...21, 22, 23ib  are given in Appendix B. 

Solving equations (20)-(23) for non trivial solution of the system, we obtain the characteristic 
equation as 
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where the coefficients iB (i 1,2,3, 4,5)  are given in Appendix B. 

The equation (24) has complete information about phase velocities and attenuation 
coefficients in transversely isotropic thermoviscoelastic medium. 



5. Special cases  
Now we will study the propagation of plane harmonic waves in different principal planes as 
follows:  

(i) For propagation in the 31xx plane i.e. n 1);,0,( 2
3

2
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equation (24) reduces to 
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equation (24) reduces to 
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(iii) For propagation in the 21xx plane i.e. n 1);0,,( 2
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equation (24) reduces to 
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(iv) For 
o

90   and propagation in the 31xx plane i.e. n )0,0,( 1n the characteristic 

equation (24) reduces to 
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where the coefficients , 1, 2,3iiiiE i   are given in Appendix F. 

Equations (25), (27), (29), (31), and (32) correspond to purely transverse wave mode that 
decouple from the rest of the motion and are not affected by the thermal parameters. 
 
6. Particular cases 

1. If we take ,0  in equation (24) we obtain the corresponding results for 
thermoviscoelastic medium in the context of Green-Naghdi theory type-II and type-III and the 
obtained results are similar as obtained by Kumar and Devi [27]. 



2. If we take 11 22 33c c c ,   12 13c c ,  44 66c c ,  1 2 3 ,      1 3K K K,    
* * *
1 3K K K   in equation (24), we obtain the corresponding results for cubic crystal 

thermoviscoelastic materials. 
3. If we take 11 33c c 2 ,      12 13c c ,    44c ,   1 3,    1 3K K K,   

* * *
1 3K K K   in equation (24), then the corresponding results are reduced for isotropic 

thermoviscoelastic materials. 
 
7. Numerical results and discussion 
In order to illustrate theoretical results derived in the proceeding sections, we now present 
some numerical results. Following (Sharma MD [13]), we take the physical data of Dolomite 
rock is considered as anisotropic thermoelastic medium (in two-suffixed notations) are given 

12 -2
11c 106.8 10 N m   , 12 -2

12c 27.1 10 N m   , 12 -2
13c 9.68 10 N m   ,

12 -2
14c -0.03 10 N m   , 12 -2

15c 0.12 10 N m   , 12 -2
16c 99.0 10 N m   ,

12 -2
23c 18.22 10 N m   , 12 -2

24c 1.49 10 N m   , 12 -2
25c 0.13 10 N m   , 

12 -2
26c 0.58 10 N m ,     12 -2

33c 54.57 10 N m ,     12 -2
34c 2.44 10 N m   , 

12 -2
35c 1.69 10 N m ,     12 -2

36c 0.75 10 N m ,     12 -2
44c 25.97 10 N m ,    

12 -2
56c 1.44 10 N m ,    12 -2

46c 0.43 10 N m ,    12 -2
55c 26.05 10 N m ,    

12 -2
66c 37.82 10 N m ,    with the assumption of thermoelastic parameters as 
* 12 2C 1 10 N m K ,   0T 300K,  3 2

0 30 10 N m K ,    3 1 1
0K 10 10 W m deg .    

The symmetric matrices {1, 0.1, 0.2; 0.1, 1.1, 0.15; 0.2, 0.15, 0.9} 
and {01, 0.02, 0.03; 0.02, 0.04, 0.05; 0.03, 0.05, 0.06} are multiplied by 0  and 0K  to define 

the general anisotropy tensors ij{ }  and ij{K },  respectively, in which 075   has been fixed. 

Following Dhaliwal and Singh [29], we take the physical data of cobalt for transversely 
isotropic thermoelastic material as 

11 -2
11 22c c 3.071 10 N m ,     11 -2

12 21c c 1.650 10 N m ,     11 -2
13 23c c 1.027 10 N m ,     

11 -2
44 55c c 1.510 10 N m ,     11 -2

33c 3.581 10 N m ,    3 -38.836 10 Kg m ,  
* 2 1 1C 4.27 10 J Kg K ,    0T 298 K,  2 1 1

1K .690 10 W m deg ,    
2 1 1

3K .690 10 W m deg ,    6 2 1
1 7.04 10 N m deg ,     6 2 1

3 6.90 10 N m deg    , 
* *
1 11 4 ,K c C  * *

3 33 4K c C  with non dimensional parameters 0.2.   

Figures 1(a)-1(d) and 2(a)-2(d) exhibit the variations of phase velocities ( ,1, 2, 3, 4)iV  

and attenuation coefficient ( ,1, 2, 3, 4)iQ  w.r.t.   for the anisotropic case and Figs. 3, 4 depict 

the variations of phase velocities ( ,1, 2, 3, 4)iV  and attenuation coefficient ( ,1, 2, 3, 4)iQ  w.r.t. 

  for the transversely isotropic case. In all the figures GN-II corresponds to Green Naghdi 
type-II and GN-III corresponds to Green-Naghdi type-III. VGN-II and VGN-III correspond to 
viscous effect on GN-II and GN-III. 

Figure 1(a) shows that the values of phase velocity for GN-II and GN-III increases for 
smaller values of   and for higher values of   the values of phase velocity decreases, 
whereas for the case of with viscous effect, the values of phase velocity increase for all values 
of  . It is noticed that due to viscosity effect the values of 1V  remain more. Figure 1(b) 

exhibits the variation of phase velocity 2V  w.r.t.   and it indicates that the values of phase 

velocity increase for initial values of   whereas for higher values of   the values of 2V  



decrease. It is evident that the values of 2V  in case of with viscous effect remain more in 

comparison to without viscous effect. Figure 1(c) depicts the variation of phase velocity 3V  

w.r.t.   and it indicates that the behavior and variation of 3V  is similar as 2V  whereas the 

magnitude values of 3V  are different. Figure 1(d) shows variation of phase velocity 4V  w.r.t. 

  and it indicates that the values of 4V  increase for smaller values of   whereas for higher 

values of   the values of 4V  decreases. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 1. Variation of phase velocity (a) V1, (b) V2, (c) V3

, and (d) V4 w.r.t. angle 0 . 

 
Figure 2(a) exhibits the variation of attenuation coefficient )( 1Q  w.r.t.   and it indicates 

that the values of 1Q  increase for smaller values of   whereas for higher values of  , the 
values of 1Q  increase monotonically. It is noticed that due to viscosity effect the values of 1Q  
remain smaller. Figure 2(b) shows that the values of 2Q  increase for smaller values of   
whereas for higher values of  , the values of 2Q  decrease. It is noticed that due to viscosity 
effect, the values of 2Q  remain smaller for initial values of  . Figure 2(c) depicts the 



variation of 3Q  w.r.t.   and it indicates that the behavior and variation of 3Q  is similar as 1Q  

whereas the magnitude values of 3Q  are different. Figure 2(d) shows the variation of 

attenuation coefficient 4Q  w.r.t.  , and it indicates that the values of 4Q  increases for smaller 

values of   although for higher values of   the values of 4Q  decrease. 
 

 
(a) 

 
 

(b) 

 
(c) 

 
 

(d) 
 

Fig. 2. Variation of attenuation coefficient (a) Q1, (b) Q2, (c) Q3
, and (d) Q4 w.r.t. angle  . 

 
Figure 3(a) depicts the variation of phase velocity 1V  w.r.t. angle   and it indicates that 

the values of 1V  increase for smaller values of   although for higher values of  , the values 

of 1V  become dispersionless. It is noticed that the values of 1V  due to viscosity effect remain 

more in comparison with without viscous effect. Figure 3(b) depicts the variation of phase 
velocity 2V  w.r.t. angle  . The values of 2V  increase for smaller values of   whereas for 



higher values of , the values of 2V  decrease. Figure 3(c) depicts the variation of phase 

velocity 3V  w.r.t. angle  . It is evident that the behavior and variation of 3V  is similar as 2V  

although the magnitude values of 3V  are different. 
 

 
(a) 

 
 

(b) 

 
(c) 

 

Fig. 3. Variation of phase velocity (a) V1, (b) V2, and (c) V3 w.r.t. angle 0 . 

 
Figure 4(a) exhibits the variation attenuation coefficient 1Q  w.r.t. angle   and it 

indicates that the values of 1Q  increase for smaller values of   although for higher values of 

 , the values of 1Q  increases monotonically. It is noticed that the values of 1Q  in case of 

without viscous effect remain more in comparison with viscous effect. Figure 4(b) exhibits 
the variation attenuation coefficient 3Q  w.r.t. angle  . It is noticed that the values of 3Q  

increases for all values of   and for comparison, it is evident that the values of 3Q  due to 

viscosity effect remain smaller in comparison with without viscous effect. Figure 4(c) depicts 



the variation attenuation coefficient 3Q  w.r.t. angle  . It is evident that the behavior and 

variation of 3Q  is similar as 1Q  although the magnitude values of 3Q  are different. 
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Fig. 4. Variation of attenuation coefficient (a) Q1, (b) Q2, and (c) Q3 w.r.t. angle  . 

 
8. Conclusions 
The propagation of plane wave in anisotropic thermoviscoelastic medium in the context of the 
theory Green-Naghdi theory type-II and (GN-II) and Green-Naghdi theory type-III (GN-III) 
have been investigated. The governing equations for homogeneous transversely isotropic GN-
II and GN-III are reduced as a special case and obtained that three coupled quasi waves and 
one quasi-transverse wave which is decoupled from rest of the motion. From the obtained 
results the different characteristics of waves like phase velocity, attenuation coefficient are 
computed numerically and presented graphically. 

From the numerical results, we conclude that in anisotropic case, the values of phase 
velocities 1 2 3, ,V V V , and 4V  in case of VGN (type-II) and VGN (type-III) remain more in 

comparison with GN-II and GN-III whereas the values of attenuation coefficients 1 2 3, ,Q Q Q , 

and 4Q  remain more in case of GN-III in comparison with VGN (type-III). It is noticed that 



in case of transversely isotropic the values of phase velocities and attenuation coefficients are 
similar with the case of anisotropic although the magnitude values are different. 

 
Nomenclature 

( )ijkm kmij ijkm ijmkc c c c    - elastic  parameter,  

u


 - displacement vector, 

ij  - thermoelastic coupling tensor, 

  - density at constant strain, 
*C  - specific heat at constant strain, 

0T  - reference temperature assumed to be such that 1
0


T

T
, 

iq  - the heat flux vector, 

S  - entropy per unit mass,  

1 2 3( , , , )T x x x t  - temperature distribution from the reference temperature 0T , 

( )ij ji   - component of stress tensor, 

ije  - component of strain tensor, 

( )ij jiK K  - coefficient of thermal conductivity, 
* *( )ij jiK K  - thermal coefficients which are characteristics of GREEN-NAGHADI-II theory, 

   circular frequency,  
   complex wave number, 

321 ,, UUU - the polarization of propagating wave, 
*T  - amplitude of temperature distribution in the medium, 

(cos sin , sin sin , cos )     n  - unit wave normal vector, 

  - polar angle with 3x axis, 

  - azimuth with 1x -axis,  
  - angle of rotation in the 21 xx   plane. 
 
Appendix A 
(i) Phase velocity 
The phase velocity are given by 
 

, 1, 2,3, 4,
Re( )i

i

V i



                    (A.1) 

 

where 4321 ,,, VVVV are the velocities of qP1, qS1, qS2 and qP2 waves respectively. 
(ii) Attenuation coefficient  
The attenuation coefficient is defined as  
 

),(Im ii gQ   i=1, 2, 3, 4,                  (A.2) 
 

where 4,3,2,1, iQi  are the attenuation coefficient of qP1, qS1, qS2 and qP2 waves 

respectively. 
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