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Abstract. We present a model of delayed fracture in elastic materials, which takes into account
the non-reversibility of the system. The results show reasonable agreement both with existing
experimental data and 2-D numerical simulations on mode-I fracture.

Delayed fracture receives a lot of attention from the
scientific community [1-5]. This interest is motivated
by the practical benefits that a better knowledge on
this subject would bring to several engineering do-
mains, such as construction and mechanical tech-
nology. In a recent work [6], Pomeau has proposed
a formula to predict the lifetime of an elastic sample
submitted to a constant load:
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where σ is the imposed load, d is the dimensional-
ity of the system, and τ

0
 and σ

0
 are constants de-

pending on the temperature, material and geometri-
cal features. This model has been used to explain
experimental results on gels [7], micro-crystals [8],
and composite materials such as chipboard and
fiberglass [9]. However, Eq. (1) is not completely
satisfactory, in that it is unable to explain some
experimental features. In Pomeau�s model, the frac-
ture is due to the nucleation of one pre-existing
defect which is thermally activated. The defect is
modelled as an elliptical hole, whose length L is
fluctuating randomly due to thermal noise in a re-
versible way - that is the defect can be opened and
closed. The fracture occurs when the amplitude of

thermal fluctuation is big enough to make L larger
than Griffith�s critical length [10] L

c
. The lifetime τ is

calculated as the inverse of the probability to have
such a rare fluctuation. If this was the case, one
would expect that the lifetime follows Poisson�s dis-
tribution, whereas it has been found that in micro-
crystals, chipboard and fiberglass τ follows a nor-
mal distribution [9]. Moreover, other experimental
observations [11] (acoustic emissions) have shown
that in composites fracture is due to the nucleation
and coalescence of several defects.

We think that the crucial point is that fracture is
not a reversible phenomenon: once the defect has
been opened by thermal noise, that is, the sample
is damaged, it cannot be �repaired� by an opposite
fluctuation. In order to take into account non-
reversibility we propose to change the original model
in the following way. Let σ be the imposed stress on
the boundary of the sample. The stress σ

A
 on the tip

of the defect is then proportional to σ L  [12], that
is :

σ σ η
A

t A L t( ) ( ),= +  (2)

where η(t) is a white gaussian term1 due to thermal
noise, and A is a constant which depends on the

1 <η> = 0 and Var[η] = KT, where K is Boltzmann�s con-

stant and T temperature.
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geometry and nature of the material. We assume
that the length of the defect L increases by dL when
σ

A
 is bigger than a threshold σ

c
 which is a material

dependent constant. The mean nucleation time dτ,
that is, the expected time to go from L to L + dL,
can be expressed as :
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where <σ
A
> = Aσ L . The lifetime τ is then calcu-

lated by integration between the initial length of de-
fect L

o
 and L

c
:
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After change of variable y
KT

c A=
− 〈 〉σ σ

2
, one finds :
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Unfortunately the above integral admits no analyti-
cal primitive. However, we can find a lower and an
upper bound for lifetime. First, suppose that y << 1

so that the term 2 2KT y  can be neglected (this is
the case if L ≈ L

c
). We are able to solve exactly Eq.

(5) and get an upper bound for τ:
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Now suppose that y >> 1, that is L << L
c
. We can

get a lower bound for τ using the following argu-
ment:
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Note that, as big values of y
0
 lead to small relative

errors, one can hope to get a tight approximation of

τ if 
σ σ

c
A L

KT

−
>>0

2
1. This seems to be the case

for reasonable values of the physical parameters
and the temperature T. After some calculations one
finds :
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In both Eq. (6) and Eq. (7), τ is clearly dominated
by the same exponential term, so that one can write:

τ τ α
σ σ

=
−F

HG
I
KJ0

0

2

exp
( )

,
KT

 (8)

where α =
A L2

0

2
, σ

σ
0

0

= c

A L
 and τ

o
 depends

weakly on σ and other physical parameters. Fol-
lowing a more detailed derivation, it is possible to
obtain full growth dynamic of a single crack in addi-
tion to the previous result [13].

To verify the validity of our model we have com-
pared predictions given by Eq. (8) and Pomeau�s
one Eq. (1) with existing experimental data and a
new 2-D numerical simulation based on a well known
electro-mechanical analogy [14]. We model the
sample with a 2-D fuse network [15, 16] (see Fig.
2). A constant current I (the load) is injected into
the net by the upper busbar, it flows through the
fuse net, and exits by the lower busbar. The voltage
V in each node is calculated by the Kirchhoff�s laws.
Thermal fluctuations are modelled by a current noise
[17]. Each fuse burns (i.e. its conductivity goes to
zero) when its current i is greater than a threshold
value i

c
. The net fails when the current is unable to

pass through.
In Fig. 1 we plot existing experimental data rela-

tive to micro-crystals [8] (Fig. 1a) and chipboard [9]
(Fig. 1b) submitted to a constant load. In Fig. 3 we
plot the data obtained by 2-D simulations. The points
represent measured lifetimes; the lines represent a
fit to Eq. (8) (solid line) and a fit to Eq. (1) (dashed
line). One sees that in the case of micro-crystals
and simulations our model seems to give better pre-
dictions than Pomeau�s one. In the case of chip-
board one can hardly distinguish which model works
better. This is because the measure range of load σ
is too small. However, using the χ2 test we found
that the prediction of Eq. (8) is slightly more accu-
rate that the one in Eq. (1).
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In conclusion, we propose a prediction for de-
layed fracture in elastic solids. We assume that
the failure is due to a step by step irreversible growth
of a defect. Every growth-step dL is due to a ther-
mal nucleation process. According to Griffith�s cri-
terion, the failure will occur when the length of the

Fig. 1. Micro-crystals (a) and chipboard samples (b) have been submitted to a constant load σ. The lifetime
τ is plotted on a semi logarithmic scale as a function of (σ

0 
- σ)2 . The value of the critical load σ

0
 has been

extrapolated from the experimental data [8, 9]. The dashed line represents the original fit with Eq. (1)
proposed by authors. The solid line represents the fit with Eq. (8) predicted by our model.

Fig. 2. Sketch of the 2-D fuse network model. The
net is composed of fuses which form a grid of NxN
squares. The current I is injected into the net by
the upper busbar, it flows through the net, and exit
from the lower busbar. At the beginning all the fuses
have the same resistance R. When a fuse fails the
current cannot flow through (i.e. R = ∞ ), therefore it
is redistributed over the other fuses according to
Kirchhoff�s law.

Fig. 3. Numerical data obtained from numerical
simulation on a 10 x 10 fuse network. The critical
current i

c
 = 1 is the same for all the fuses (homoge-

neous net). The lifetime τ is plotted on a semi loga-
rithmic scale as a function of (σ

0
- σ)2 = KT for differ-

ent values of the parameter KT ((°) KT = 0.15,(∆)
KT = 0.12, (  ) KT = 0.1). The dashed line repre-
sents the initial fit with Eq. (1) as proposed by some
authors. The solid line represents the fit with Eq. (8)
predicted by our model.

defect L reaches the critical length L
c
. This model

seems to be quite general, in that it is in agreement
with both experimental data on different materials
(micro-crystals [8], chipboard and fiberglass [9]) and
2-D numerical simulations. Remarkably, the same
functional dependence of the lifetime τ on the load
σ is also found in simple simulations on the DFBM
[17].
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Several aspects of the model need to be more
deeply investigated. First, disorder is expected to
play an important role [9, 17]. Second, it would be
interesting to generalize Eq. (8) to the case of a
time dependent load. Finally, this model could be
useful to check statistical properties of fracture [11,
18-20] which remain little understood.
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