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Abstract. Thermodynamic functions that realistically describe characteristics of substances in various
parts of the phase diagram are fundamental characteristics of matter. The necessity in such functions
has always been urgent and permanently increases. The advanced equations of state constructed
to describe the behavior of metals in a broad range of compression parameters contain tens of free
parameters and experimentally found constants (see, for instance, [1, 2]). Such constants were found
from shock-wave data, from measured unloading isentropes of porous specimens, and from other
experimental thermodynamic data.

In the present paper, we propose new model equations for thermodynamic functions of crystalline
and liquid states based on the dependence of the Gruneisen coefficient I'(V, T") on volume and tem-
perature. The difference between the elastic (“cold”) components of energy and pressure for a liquid
and those for a solid is taken into account. Configurational entropy of a liquid, providing a measure of
its disorder and resulting in finite values of the total entropy in the zero-temperature limit, is introduced.

1 Construction of the Gruneisen function

Following [3], we define the Gruneisen coefficient (V") by the formula
yV)=2/3-2/1-aV/V), a=1+2/(vs—2/3)+2P, /K, (@)

where v, = BKVy/cy, K, is the adiabatic bulk compression modulus, ¢, = ¢, + ¢, IS the specific
heat at constant volume, made by the heat capacities due to the lattice and due to electrons, and P;
is the thermal pressure under normal conditions. All quantities in (1) are to be calculated at some initial
conditions that include specific volume g, temperature T, and pressure F.

The equation of state in the Mie-Gruneisen form is

E(V,T) = Ey + ¢ T 4 0.5¢, 00(V/V0)?/3T?, 2
P(V,T) = —(dE,/dV) + vico T/V + co.c0T?/[3V(V/ V)3, 3)
F(V,T) = Ep(V) + co TIn(O(V)/T) — cp0(V/Vo)¥3T?/2. 4

Using the definition of the Gruneisen coefficient vy = — (dln©/dIn V')}. and relation (1), we find the
Debye temperature as a function of volume:

O(V) = Oo[(a — V/Vo)/(a = 1)]*(Vo/V)*/?, ®)

where 0 = ©(1}) is the Debye temperature under normal conditions.

2 Construction of the energy function on the zero isotherm

To find the Gruneisen coefficient (V') as a function of volume, we use the Landau-Slater theory [4, 5]:
(V) = ~2/3 — (V/2)(d*P, /dV?)/(dP, /dV). )

Solving together (1) at the temperature 7' = 0° K and (6), we obtain the specific energy and pressure
on the zero isotherm:

EI(V) = 70,:6‘/0(01]{1(5) + 025) + Cg,Px(V) = ClHQ(f) + 02. (7)



where C,C3, and C3 are some unknown functions that depend on characteristics of the particular ma-
terial, and the H-function is

Hy () = 9672/5 1 1861/5 4 27€4/5 /2 — 9€7/3 /7 9¢1°/5 /70,
Hy(€) = —3675/3 /5 + 6672/3 + 18¢1/3 — 3¢4/3 4 3¢7/3 7.

A more completed and substantiated method for reconstructing the values of parameters on the zero
isotherm can be found elsewhere [6].

The set of semi-empirical relations (1 — 7) describes the behavior of thermodynamic characteristics
of a solid. The values of Vg, 3, K¢, ¢,, ©¢, and ¢, ¢ are to be taken at some initial conditions and readily
available in reference sources on physical and mechanical properties of substances. The quantity a,, is
a parameter to be adjusted so that to obtain a best fit to experimental data.

3 Characteristic Debye temperature

The energy of a system of 3V 4 independent harmonic oscillators of one and the same frequency is [7]
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where w is the oscillator frequency, h is the Planck constant, and & is the Boltzmann constant.

Whatever the oscillations that can be executed by the system, the total number of all possible os-
cillation modes should be equal to the total number of the degrees of freedom of the N particles that
compose the system, i.e., to 3N. Here, according to the quantum theory, the mean energy per one
oscillation depends only on the frequency and is given by the formula
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That is why, to find the energy of a certain volume V' of the solid, it is required, first of all, to find
the total number of possible oscillation modes in it whose frequencies fall in the interval between w and
w + dw. This interval will be denoted as dN,,.Then, the energy of the solid can be expressed as a sum
over all possible frequencies:

U:/gdew:/M.
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In determining U, it is possible, following Debye, instead of performing a microscopic consideration
of coupled lattice vibrations, to use a phenomenological approach, considering the crystal as an elastic
continuum. Thus, instead of the oscillation spectra of individual atoms, we consider the spectrum of
elastic vibrations of the crystal as a whole; here we restrict ourselves to low-frequency vibrations whose

wavelength is large compared to the interatomic distance (acoustic waves).
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body of a volume V, we obtain:

U= iw/ Ew?dw. (8)
272

Here, the integration over frequency is to be performed from zero frequency to some maximum
frequency to be determined from the condition that the total number of natural vibrations of the body
should be equal to the total number of its degrees of freedom. If Ny is the total number of molecules
in the volume V, then the total number of the degrees of freedom is 3Ny.. The latter, however, is only
valid in the case in which each of the lattice sites is occupied by a whole molecule of the substance
(molecular crystal). Alternatively, as it is the case with an ionic crystal, if individual parts of the molecule



occupy different lattice sites, then the total number of the degrees of freedom increases by the factor
that shows how many lattice sites correspond to one molecule. The latter is quite clear since in this
case parts of molecules (atomic groups or ions) that occupy different lattice sites can be considered
as individual particles. Let s be the number of individual lattice sites that correspond to one molecule.
Then, the total number of the degrees of freedom in the volume V is 3sNy, and the condition for the
maximum frequency is
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Thus, expression (8) for the energy of the crystal acquires the form

WM AX

1 " hw3dw
U=ga1 / T

o e KT —1
We introduce the new integration variable x = Z—; Denoting 0 = M%, we obtain
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The quantity ¢ is called the characteristic Debye temperature.
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The quantity I in (9) equals the sum of all inverted cubes of the phase velocities of elastic waves aver-

aged over all wave-normal directions: I = <U%,, + U% + U%,,>
0 1 2

Thus, the theoretical calculation of the characteristic Debye temperature reduces to calculating the

quantity I from set elastic constants of the crystal. The simplest method to find the value of I consists in

that the crystal of interest is to be replaced by an isotropic medium closest in its properties to the crystal.

In isotropic solids, owing to the fact that phase velocities do not depend on wave propagation direction,

the averaging becomes unnecessary and can be omitted, and we finally obtain:
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where v; is the velocity of longitudinal waves and v is the velocity of transverse (shear) or twist waves.
If the velocities are unknown, we can invoke the theory of elasticity in which the velocities are given by
the formula

, Ks+%G , K
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where G is the shear modulus.

The accuracy of the calculation algorithm depends on material anisotropy, since we use reduction
to an isotropic body, and on calculation temperature. The higher the temperature, the more precise the
calculation is, since, with increasing temperature, the fraction of excited high-energy (or high-frequency)
guantum states increases.

The characteristic Debye temperatures calculated for several crystals for which values of elastic
constants are known are listed in the table 1.

The notations in the table are as follows: © is the Debye temperature yielded by the above proce-

exp —

0 . .
is the relative
eexp

dure, O exp is the experimental Debye temperature taken from [9], and 60 =

error in predicting the Debye temperature.
The comparison shows good convergence of the values of 0y, giving us all grounds to believe that
this procedure can be applied to materials with unknown Debye temperatures.



Al Cu Mg W Be
Oo,K 407.8 3233 3733 364.5 1420.1
O exp,K 433 347 403 383 1481
00, % 6.1 6.9 7.3 49 4.1

Table 1: Debye temperature

4 Equation of state for the liquid phase

As was noted above, the present thermodynamic model describes one phase specified by some initial
data. After the shock adiabate crosses the boundary between the phases, the calculations performed
according to this model yield, instead of liquid, data for an overheated solid. Hence, it is required to
modify the model of the solid so that to take into account the liquid-phase properties and phase-transition
phenomena.

It is known that the expression for the free energy Fy,(V,T') of a liquid in the “crude” approximation of
the model of the classical harmonic oscillator has the form

Fr(V,T) = Ep (V) + ¢ TIn[OL(V)/T] — 0.5¢, c0(V/Vo)¥*T? + F, (10

where E, (V) is the cold component of the energy of the liquid, ©, is some characteristic temperature,
F. = —RT/A is the contribution due to entropy, and A is the atomic weight. To exert “control” over
the value of the configurational entropy, we introduce a parameter ¢, that has meaning of a residual
entropy at the temperature T = 0°K. Then, the entropy term in the free energy acquires the form
F,= —a,RT/A.

In its appearance, the expression for the free energy F(V,T) of a liquid differs from expression
(4) by the additional entropy term. Yet, the difference between the solid and liquid state is also in that
these states possess different cold energies and temperatures. These fundamental differences in the
description of solid and liquid phases were laid down in [8].

Expression (1) for the Gruneisen coefficient was derived without any restrictions on the phase state
of the material. We therefore may conclude that these relations have identical meaning and are of
identical functional form, and the difference consists in the particular values of parameters, determined
by particular initial conditions.

Thus, by analogy with the thermodynamic model for the solid state, one can construct a model for
the liquid state. To calculate the parameters of the liquid behind the shock-wave front, in the very like
the same manner one can take into account the Rankine-Hugoniot relation, which makes it possible to
find the temperature and, afterwards, all thermodynamic parameters along the shock adiabate.

5 Melting under high pressures produced by shock waves

In consideration of particular thermodynamic models, it becomes clear that the ordinary classification
of states in the region of high pressures and temperatures often looses its definiteness and become
conventional, and the boundaries between the phases either vanish or become obscure, corresponding,
in fact, to a continuous mutual transformation of close states.

As the shock-wave pressure increases, the thermal energy transferred to the substance continuously
increases and, from certain pressures on, a transition of the initially solid body into the liquid state should
be observed. Further variation of the dependence T'(P) along the dynamic adiabate can be figured out
by invoking analogy with melting under atmospheric pressure, in which situation an increase in the
energy transferred to the substance leads to an increase in temperature unless the substance gets
completely melted. Further increase is further accompanied by an increase in temperature. A similar
pattern is to be expected under shock compression; the difference here consists in the fact that in the
region where the two phases co-exist (the segment of the melting curve between the shock adiabates for
the liquid and for the solid, i.e., segment 2-3 in Fig. 1) some rise in the temperature should be expected
since for the melting curve of most substances, the so-called “normal” ones, dT'/dP > 0.

The expenditure of energy on melting gives rise to sharp kinks in the shock adiabate in the 7" = P
plane; for this reason, the neglect of the melting under shock compression of the substance brings about
inaccuracies in the determination of temperatures (points 3—4 in Fig. 1). Simultaneously, melting has
little effect on kinetic shock-wave parameters and on the behavior of the dynamic adiabate in the P -V
coordinates [10].
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Figure 1: Melting curve and shock adiabate in the solid-phase and liquid-phase regions

To construct the melting curve, we use the condition of phase equilibrium:

PL=Ps=P
Sp = Ss + ASp, (11)
F;, = Fs + PAV,,

The third equation in (11) is the condition of equality for the chemical potentials of the two phases per
one mole of substance.

6 Results

With gained equations of states for the solid (1-7) and liquid (10) phases and with allowance for the
Rankine-Hogoniot relation and phase-equilibrium conditions (11), we calculated dynamic adiabates and
melting curves of Al, Cu and Pb crystals. The melting curve of each metal was found as the boundary
between the phases with corresponding equations of state. The results are shown in Fig. 2.

Thus, with six constants, Vg, 8, Ky, ¢,, G, and ¢, o known at some initial point, and also with exper-
imental data on dynamic loading of the solid, one can construct an equation of state of the condensed
substance that realistically describes the material behavior in a broad range of pressures and tempera-
tures with allowance for first-kind phase transitions.
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Figure 2: Melting curves and shock adiabates in the solid-phase and liquid-phase regions
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