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Abstract. In this contribution dynamics of quantum oscillator under external impulse force is 
investigated. The oscillator with symmetric polynomial potential in the well of impenetrable 
walls is considered. The potential consists of quadratic and cubic terms; the cubic term de-
pends on modulus of coordinate. Influence of walls and anharmonicity on vibrations is dis-
cussed. Properties and peculiarities of resonances have been studied in context of non-
stationary Schrödinger’s equation at specified initial conditions. Solutions for the probability 
density, expectation coordinate as function of time; Fourier’s spectra were analyzed in detail. 

 
 

1. Introduction 
The study of quantum wave packet dynamics under external force fields is of widespread in-
terest in different areas of physics, optics, and informatics. External actions on quantum wave 
packet of a particle can excite resonant motions. Although the resonant problem is discussed 
in scientific literature, for example in [1, 2], it is investigated insufficiently. It is necessary to 
perform the comprehensive numerical calculations to open a new area in control of quantum 
states and quantum means. Here, the external action can be seen as controlling. In our previ-
ous paper [3] we studied the ordinary and parametric resonances for a spatially bounded quan-
tum harmonic oscillator. At present paper, the polynomial bounded potential as a composition 
of quadratic and symmetric cubic terms is studied. The symmetric cubic term depends on co-
ordinate modulus to the third power. The main topic of our paper is a classic resonance of os-
cillator under impulse force. Some results of the paper [3] will be represented and discussed 
in the context of main topics related to resonances and anharmonic properties. Notice that the 
notion “spatially bounded oscillator” was used in monograph [4] for description of the quan-
tum harmonic oscillator in rectangular potential well with impenetrable walls. This notion 
will also be used by us for the description of anharmonic oscillator in the infinitely deep rec-
tangular potential well. 
  
2. Principal equations and assumptions 
The dynamic of spatially bounded quantum oscillator is considered in domain 

LxL  ,                  (1) 
where x  is coordinate located in ];[ LL . On domain boundaries the wave function  tx,  
satisfies to the condition  

  0,  tL ,                  (2) 
where boundaries are of the walls of an impenetrable well, t  is time. In the domain, the quad-
ratic potential is specified as 
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where m ,   are mass and frequency of oscillator, k  is constant, respectively. To set 
Cauchy’s problem it is necessary to specify the corresponding initial condition  

   xtx 00,  .                 (4) 
 We consider two types of those conditions. In the first case, we use the wave function 

 x0  for the ground state of quantum harmonic oscillator on the interval   , . Here, the 

wave function obeys to the equation   22
0 2/exp lxA  , the constant A  can be obtained 

from the normalization condition 

1*



L

L

dx .                  (5) 

The normalization condition is complied with sufficient exactness in time for the investigated 
dynamic processes. In the second case for the spatially bounded anharmonic oscillator, the 
wave function 0  is designed from the numerical solution of the stationary Schrödinger equa-
tion. 
 To describe the wave packet dynamics at conditions (2), (4) and the external action, the 
time-depended Schrödinger equation is used  









U
xmt

i 2

22

2
 .              (6) 

Here eUUU  , eU  is the external potential,   is the reduced Planck’s constant, i  is an 
imaginary unit. The transition to the non-dimensional quantities and operators in Eq. 6 can be 
obtained by means of the basic units of length, time and energy 0U  as follows 
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As results, we have 
 lx  / ,       lLL  / ,       tt  / ,      0/ kk , 

 0/~ UUU  ,      0/~ UUU ee  , 
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and the Schrödinger equation is written as 










~~~

2
1~

2

2

Ui


.               (7) 

The non-dimensional initial condition of the first type takes form 
2

2
1

0
~~ 

 eA ,                  (8) 

where A~  is a non-dimensional constant. The normalization condition (5) can be rewritten as 

1~ 2





L

L

d




 .                  (9) 

The quantity A~  can be defined from (9). If ]20,20[ , then the quantity A~  is equal to 
7511.0 . This value is slightly distinct from the value on the interval   , . The initial 

wave function 0
~
  tends rapidly to zero with increasing the coordinate  . 

 By using the standard formulae for the probability density and probability stream density, 
in next analysis we introduce the non-dimensional probability density N , the non-
dimensional velocity of the probability fluid V  determined as follows 
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The dimensional velocity of the probability fluid   can be defined from the relations 
0/ vvV  ,  lv0 . 

The non-dimensional velocity operator can be defined as 



 iV̂ . 

 For dynamic analysis we shall also calculate the mean values of the coordinate and veloc-
ity by means of the formulas 
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In separate cases numerical calculations of the normal variances  , V  were carried out, 
which are determined as  
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(12) 

The expressions in the quadratic brackets are known as the formulae for the mean-quadratic 
values of coordinate and velocity, respectively. Using the Fourier transform, we have been 
investigated the frequency spectra for the temporal dependences of    and other quanti-
ties. Fourier transform for    is designated via  F  where   is the non-dimensional 
frequency in units of the oscillator frequency. 
 The non-dimensional form of the stationary potential distributed between two impenetra-
ble walls is the sum 

32

2
1~  U ,                     (13) 

where   is a variable parameter. Potential (13) is symmetric curve with respect to the axis 
0 . To find the eigenvalues   and eigenfunction  , the stationary Schrödinger equation 

 










 U

d
d ~

2
1

2

2

                    (14) 

was solved numerically by the method described in [5]. Below we discuss the wave packet 
dynamics when the external action is a periodic sequence of impulses of a short duration. The 
non-dimensional potential of impulse action is of 

FUe
~~

 ,                             (15) 

where 0/~ FFF  , lUF  /0 , F  is a classic force. The next sections will be devoted to reso-
nances and anharmonicity (§§ 3, 4). 
 
3. Bounded quadratic potential and resonances 
Firstly, we discuss the eigenvalues of the Hamiltonian operator that represent the energetic 
spectrum. It is well known that the energetic spectrum of quantum harmonic oscillator is 
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equidistant; it follows from the solutions of the stationary Schrödinger equation. If the quad-
ratic potential is bounded with the well walls, then the situation is changed. On the finite in-
terval  LL  , , the equidistance property can be approximately conserved with specified 
exactness to some value of state number i . In our calculations, for the spatial interval 
  8,8  this number is equal to 12 , then the difference 1 iii   becomes depending 
on number i . We demonstrate this property on the shorter interval   , . The eigenvalues 
of non-dimensional energies  , obtained from Eq. 14 at 0 , presented in Table 1. 
 
Table 1. 

i  i  i  i  i  i  i  i  
1 0.4998 2 1.5003 3 2.5105 4 3.5611 
5 4.7082 6 6.0129 7 7.5157 8 9.2333 
9 11.1687 10 13.3190 11 15.6796 12 18.2450 

 
Here 1  is close to the value of the ground state energy 0  for a harmonic oscillator. The dif-
ference between the second and first levels is close to the frequency of harmonic oscillator 

1  in the interval   , , but with increasing i , influence of the walls on the energy 
spectrum is evident. For interval   ,  the spectrum is not equidistant, the distance be-
tween the neighboring energy levels increases with the number of eigenstate. The eigenstate 
function 1  corresponding to the eigenvalue of 1  was also calculated and then approximated 
by an analytical formula. The function 1  describes the ground stationary state of the system; 
it is used as the initial condition for the analysis of the time-depended Schrödinger equation 
(7). If the external action is absent, i.e. 0~

F , then the solution of the non-stationary 
Schrödinger equation shows that the probability density and other variables do not alter in 
time. However, if we switch on the external driven force 0~

F , the dynamic variables will be 
dependent on time. Below, we explored the oscillatory regimes in the spatial interval 
  8,8 .  
 Let us consider the time duration of impulse action 39.08/   . This quantity is 
equal to 16/1  of the vibration period for the undisturbed oscillator. The impulses are repeat-
able at intervals 20 T . The frequency of impulse repetition is equal to 0/2 Te   (in the 
non-dimensional form). The calculations were carried out for the sequence consisted of these 
impulses. We performed the calculations for one and then for three impulses of the external 
action at the different values of non-dimensional force F~ . For values /10~

F , /20~
F  

the results of calculations are presented in Figs. 1-3. The action of a single impulse on the os-
cillator in the ground state (8) was investigated in context of calculations for the probability 
density, the phase trajectories that relate to the mean coordinates and mean velocities. Fourier 
spectra for these variables were also studied. For a time of impulse action with the duration of 

8/  , the mean velocity V  increases from zero to some value in accordance with the 
parabolic law and then the phase trajectory becomes elliptical. The displacement    from 
the center of well is 58.1  and maximal value of velocity also ranges up to 58.1 . For the im-
pulse time, the normalization condition (9) is varied over the interval   41021   and then it 
is conserved with higher exactness. The Fourier spectra were studied on temporal interval 
  8,8/ , they content the basic frequency 1  corresponding to the bounded oscillator 
period 2 . This oscillation period is observable easily at the map of probability density lev-
els. The probability density at 0 , as a function of time, changes with the period   as for a 
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harmonic oscillator on the interval   , . Fourier spectrum of this function is expressed by 
the spectral components at frequencies 4,2,0 ; intensities of the other components de-
crease rapidly with the rise of frequency  .  
 The action of next impulses demonstrates the existence of resonance, which manifests 
itself as the growth of the oscillation amplitude. The numerical data represented by the graphs 
allow us to state that ordinary classical resonance takes place. In Fig. 1 the map of probability 
density levels is shown, the dark “snake” characterizes the more intensity but the light do-
mains exhibit just the opposite, i.e. the smallness or zeroth intensity. The localization of prob-
ability density in the finite domain can be explained in the context of probability fluid motion 
[6]. The deviation of “snake” from initial position is increased with time. The time -dependent 
mean coordinate and phase portrait amplify the picture of resonance (Figs. 2 and 3). The os-
cillation amplitudes are increased almost linearly. Such behavior takes place only in the ordi-
nary classical resonance. The amplitude of external action determined by the impulse height 
F~ operates the resonant process. The phase trajectory on the plane   V,  is generated 
by arcs of elliptical form and short crooked transitions. The trajectories of first type corre-
spond to the motion of a quantum wave packet without external action, whereas the trajecto-
ries of the second type on transitions are defined by short impulses of an external action. The 
every next impulse of the external action places the trajectory in higher elliptical orbit. So, the 
energy of external action is injected into the oscillator. If the next impulse does not arise, then 
the trajectory closes and describes the oscillations with the same amplitude. The sign change 
of the external action impulse produces leap-like decreasing of the oscillation amplitude and 
return of phase trajectory on lower elliptical orbit (Fig. 4). 
On the close examination for weak oscillations, the performed calculations and conclusions 
are agreed with properties of a quantum oscillator. 
 
4. Anharmonic oscillator in a well with infinite walls 
Now consider the anharmonic oscillator located between two impenetrable walls with one 
wall at  8 L  and another at  8L . As in the previous case, it allows us to decrease 
the influence of walls on the oscillations. Below, all the calculations are performed for the po-
tential (13) with 1.0 . The eigenvalues of non-dimensional energies   are obtained from 
Eq. (14) at 1.0  and presented in Table 2.  
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Fig. 1. Probability density as a function of time and coordinate. 

a) /10~
F       b) /20~

F  
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Fig. 2. Mean coordinate as function of time. 
a) /10~

F       b) /20~
F  
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Fig. 3. Phase trajectories on plane   V, . Parameters are the same as in Figs. 1, 2. 
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Fig. 4. Second impulse of opposite sign reduces oscillation amplitude. 
a) Map of probability density     b) Phase trajectories 

 
Table 2. 

i  i  i  i  i  i  i  i  

1 0.5504 2 1.6956 3 2.9042 4 4.1504 
5 5.4282 6 6.7316 7 8.0577 8 9.4037 
9 10.7679 10 12.1484 11 13.5442 12 14.9541 

 
One can see that the difference 1 iii   increases with the state number i . In compari-
son with the stationary results for the quadratic potential on interval   8,8 , we have to 
notice the distinction. The distinction is caused by anharmonicity induced by the cubic poten-
tial. In spite of the growth i  with i  for the quadratic potential on the narrow interval 
  ,  (see Table 1), the influence of cubic potential on dynamics can be more essential 
than the quadratic one. The eigenstate function 1  corresponding to the eigenvalue of the 
background state 1  was calculated and then was approximated by the formula 
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where 1715.00 a , 0088.01 a , 0019.02 a , 0005.03 a ; 0...,,, 954 aaa . The coeffi-
cients ia  are written to the 4th sign after the point, at 5i  all the coefficient moduli are less 
than 0001.0 . The calculations for time-depended solutions of the non-stationary 
Schrödinger’s equation (7) were carried out at /10~

F , 8/   with the initial condition 
(16), on the interval   8,8 .  
 We consider two modes of switching an external impulse force. In first case, the impulses 
of external force are switched on at specified time instants to obtain the maximum permissible 
rise of an oscillatory amplitude. These instants are 01  , 635.52  , 85.103  . The differ-
ences ii  1  allow as to find )/(2 1 ii    and compare them with corresponding 

ii  1 . The agreement between numbers can be quite sufficient. Such choice of instants is 
related with non-isochronous oscillations of the oscillator caused by a cubic non-linearity. At 
instant of time 2425.11  the third impulse is switched off and the system is free from an 
external action. Under such method of oscillation excitement, the resonant mechanism is dis-
crete in time, it is evolved to some instant of time, and then the oscillations stabilized. The 
map of probability density levels (values) on the plane ),(   is presented in Fig. 5. The more 
intensive values of probability density are pointed as dark and minimal values about some 
critical value have white or light gray colors. The expectation coordinate     on the inter-
val   8,8  as function of time   is shown in Fig. 6. We can see that the quantity    
increases with time in comparison with the initial value. The influence of anharmonicity at 

1.0  and /10~
F  consists in initiation of large-scaled envelope or modulation. The 

phase trajectories for expected values of   , V  are plotted in Fig. 7. The solutions for 
  , V  and phase trajectories correlate mutually. The map of levels for the probability 

stream density (8) also correlates with Fig. 5 for the probability density on the plane ),(  . 
The packet behavior can also be illustrated in frame of the normal deviation   as function of 
  (Fig. 9). The function  F  is of broadband peak, which can be related with the small 
time interval and also with system properties.  In the second case, the external force im-
pulses are switched on in equally spaced instants of time. The instants are 01  , 635.52  , 

270.113  . The differences 635.51223    are the same. Here, the rise of oscilla-
tory amplitudes takes place.  
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Fig. 5. The map of probability density values 

a) for  25,0          b) fragment for  15,0  
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Fig. 6. Mean coordinate as a function of time. 

a) for  25,0       b) fragment for  15,0  
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Fig. 7. Phase trajectories on plane ),(  V  

a) for  25,0       b) fragment for  15,0  
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Fig. 8. Phase trajectories for a probability        Fig. 9. Normal deviation   as a function of 

stream density.           time. 
 

The phase trajectories, Fourier spectrum, and the uncertainty product are represented in 
Figs. 10-12. The uncertainty product is the minimum at initial time of and then grows and os-
cillates. The probability density as function of coordinate at different times shown in Fig. 13 
is subjected to a fragmentation, but at marked time instants the packet remains localized. 
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Fig. 10. Phase trajectories on plane ),(  V  under equally spaced external impulses 

a) for  25,0       b) fragment for  15,0  
 

We explored dynamic processes at small oscillations; the oscillatory amplitude was less than 
the well width. Nonetheless the anharmonicity influences on the properties, even though the 
impulse force is moderate and oscillations are weak. 
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Fig. 11. Frequency response.          Fig. 12. Uncertainty product as a function of 

time. 
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Fig. 13. Probability density as a function of coordinate at different times. 

a) at 0       b) at 1327.25  
 

5. Conclusion 
The resonances of a quantum oscillator were investigated at the external impulse force. Reso-
nant mechanism is evident for equidistant oscillator (the size of well is sufficiently large). It 
takes place if oscillator is not equidistant and influence of anharmonicity becomes essential. 
In our numerical calculations we chose the motion regimes when the influence of walls was 
weak. 
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