














The equation has two limiting cases at σ= σc and at σ=∞, where
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respectively. Various empirical estimates give 

ttmax c9.06.0c/a −≅= κπ˙ .

Problem of a crack tip. Griffith not only had inset into engineering mechanics the phys-
ical quantity, surface energy, but tried to introduce an idea of the molecular structure of a ma-
terial [5]. “Molecular attraction in a crack is small everywhere excluding the immediate vi-
cinity of its ends. On this base, the crack can be considered as a free of tensile stresses sur-
face, therefore the mathematical theory of elasticity must give right stresses in the all points
of a body excluding the points in the vicinity of crack ends. Here two surfaces of the crack
are very near to each other, and so in this region there are large forces of molecular attraction
of order of theoretical strength.” Griffith gave evidence in favor of his assumption with a very
original way. He made a ring which opening was adjusted to a steel ball for bearings. The
ball passed through the ring easily, but if to wet the ring, the ball gets stuck. Water molecules
of the thin film showed huge forces of cohesion with each other. 

As the character of molecule attraction in a crack tip was unknown, Griffith used energy
approach and took a crack in the form of an oblate ellipse. The approximation of a crack with
an ellipse is a postulate. As any postulate, it can be accepted or not be accepted. Later there
appeared other models of cracks [8]: a notch crack with a tip converging to an interatomic
distance (P.A. Rebinder, 1936), a beak-shaped crack that contains interatomic bonds at differ-
ent stages of tension (H.A. Elliott, 1947), etc. Having no direct evidence on the character of
cohesion forces and their distribution on a crack surface, any mechanician is compelled to in-
troduce hypotheses in order to construct a mathematical theory of cracks. 

Fig. 8. Form of a crack and distribution of cohesion forces according to Barenblatt.

Among them one of the most popular models that even was incorporated into the seven-
volume encyclopedic handbook “Fracture” [2]  and the well-known Course of Theoretical
Physics by Landau and Lifshits [9] is due to G.I. Barenblatt (1959). Here the crack surface is
divided into two parts (Fig. 8): in the internal part of a crack the opposite crack faces are far
off from each other, their interaction is small and the crack surface is considered to be free of
stress. In the vicinity of crack ends there are large forces of cohesion. To make calculation,
two postulates are introduced:
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• The size of crack-tip regions is small in comparison to the size of all crack,
• The form of crack-tip regions, and therefore the local distribution of cohesion forces,

do not depend on applied forces and is one and the same for a given material at given
conditions (temperature, pressure an so on). 

Taking into account that “molecular attraction in a crack tip” is a crucial point of any math-
ematical theory, one can see that the postulates accepted are changing as times goes by. Ac-
cording to J.N. Goodier [2] “the mathematical theory of cracks is an attempt to characterize
quantitatively processes in some idealized medium that has the properties so simplified that it
is possible to make mathematical study. At the same time the medium must have similarity
with real materials to ensure practical value. The use of continuum models is a commonly ac-
cepted approach to avoid mathematical difficulties, but for study of cracks microstructure is
very essential. At the atomic level crack propagation is the process of separating one atom
from the neighboring one by the plane of a crack. Relation between a separation force and a
separation of atomic planes is not known exactly, but it is essentially a  nonlinear relation.
The mathematical theory of crack propagation is not developed to such extent that it is pos-
sible introducing a concept of this interaction as a commonly accepted postulate. The main is-
sue is how to embody large strains and fracture in a small region near a crack tip.” 

3. Molecular dynamics
3.1. Crystalline materials

Beginning. The radically new impetus was given to a study of cracks by transition from
continuum models to discrete ones, especially by using molecular dynamics. That approach
had performed a key role because it gave possibility observing microscopic mechanisms of
fracture without introducing various postulates, and what is more, to verify the grounds on
which the continuum models were based. The first investigations were made under undue in-
fluence of fracture mechanics and were devoted to a study of crack propagation [10]. A crack
was introduced into a crystal  rather artificially by cutting up a part  of interatomic bonds
between two adjacent atomic planes or by removing a part of an atomic layer out of a closed
packed plane. The main idea of such investigation was to determine a crack type, i.e. to find
out whether a crack will cleave, emit dislocations or blunt. Besides, it was assumed that mo-
lecular dynamics could be used to verify the assumptions and analytical solutions of fracture
mechanics and dislocation theory,  to establish relations between fracture toughness and a
crystal structure, and to clear up the influence of a temperature on fracture in a straightfor-
ward way. That pragmatic approach was based on the conviction that if one knew crack beha-
vior, one would be able to make conclusions about ductility and brittleness of technologically
important materials. A series of molecular dynamics studies for −α iron demonstrated cleav-
age crack extension of a pre-existing crack as well as dislocation generation at a crack tip [13,
14].  However,  because of a limited number of atoms (~1700) the question had remained
opened: whether it was possible to transfer the fracture mechanism found to real large crys-
tals. Another question concerned the validity of the empirical interatomic potential construc-
ted by R.A. Johnson for studying point defects in −α iron. 

Crack  nucleation.  Almost  simultaneously  with  the  above-mentioned  mechanical  ap-
proach, a physical approach to the crack problem was developed [15, 16]. The method is
based on the molecular dynamics simulations of two-dimensional systems. In that approach,
deformation and fracture is modeled as a whole instead of studying an individual crack in a
particular  material.  Such approach is of basic importance because it  allows abandon Pro-
crustean bed of fracture mechanics with its criteria and postulates, sometimes rather artificial.
Moreover it is not connected a priori with two basic structure elements of continuum theories
of deformation and fracture, dislocations and cracks, and can be used for investigation of
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crack nucleation in perfect and imperfect crystals that have no pre-existing cracks or disloca-
tions. Besides the approach allows study general features of fracture of discrete media. 

Molecular dynamics simulations of two-dimensional systems have revealed that a crack
can be nucleated as follows: 

• At a void surface [15],
• By fracture of a low-strength inclusion [17, 18],
• At the boundary of a high-strength inclusion and surrounding crystalline material [18,

19], 
• Due to hindered slip of the dislocations of intersecting slip planes and following dislo-

cation reactions [20],
• Due to twinning under conditions of constrained strain [21],
• By cleavage of a sessile dislocation core [22-26],
• By rupture of weak and strong bonds in a chain crystal [27].
Comparison  with  dislocation models.  It  is  worth  noting  that  some  of  the  revealed

mechanisms of crack nucleation were suggested earlier in the framework of the theory of dis-
locations [7, 8]. For example, at the first stage crack nucleation due to the hindered slip of
dislocations moving on two intersecting slip planes resembles the dislocation mechanism
suggested by A.H. Cottrell (1958) for b.c.c. metals. According to Cottrell, dislocations of two
intersecting slip systems <111>, having the Burgers vector ½ <111>, react and transform into
sessile dislocations with the Burgers vector <100>. Combining, they create a crack nucleus.
Just the same, at the first stage crack nucleation, due to twinning under conditions of con-
strained  strain,  resembles  the  dislocation  mechanism  suggested  independently  by  V.N
Rozhanskij (1958) and J.J. Gilman (1958). According to the authors, the slip planes are bend-
ing as a result of dislocation passing. Then in the bent slip band, a crack is opened under the
action of normal stresses. However it is necessary to stress that both dislocation mechanism
suggested operate only at the first stage of fracture. After that the fracture develops in a more
complicated way than it was predicted. But what is more essential, molecular dynamics did
not confirm a lot of dislocation mechanisms suggested for crack nucleation on purely geo-
metrical reasoning without taking into consideration the influence of temperature.

Crack propagation. The analysis of molecular dynamics experiments shows that all di-
versity of space-time fracture of homogeneous and heterogeneous crystals can be reduced to
two mechanisms [7, 28]:

• Successive rupture of interatomic bonds in the tip of a growing crack, i.e. the brittle
fracture in a pure form (brittle crack).

• Many-stage process which incorporates at first either rupture of interatomic bonds in
front of a growing crack or dislocation emission from a crack tip and rupture of in-
teratomic bonds in cores of the emitted dislocations; both processes lead to nucleation
of new cracks. Then the new cracks grow and coalesce with the initial main crack
(ductile crack). 

It  must be emphasized that the type of a crack and details of fracture depend on several
factors. They are: temperature, strain state, and crystallography. Consider some examples for
2D copper crystals described by the Morse pair potential. 

Zero temperature. If the crack in 2D crystal is orientated along the closed packed direc-
tion that is normal to tensile strain and the initial tensile strain is 7%, what corresponds to the
Griffith stress, we have a brittle crack [22]. If the strain is 10%, i.e. half again as many, the
brittle crack transforms into ductile and blunts. If a crack is introduced at an acute angle to
this direction, it propagates as a ductile in a zigzag way, but does not blunt [22].

Low temperatures. At 100 K the general picture is the same as described above. How-
ever the temperature decreases both critical strains. The strain of opening a crack becomes
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6%; the strain of the brittle-to-ductile transition reduces to 7% [7, 24]. In the interval between
two critical strains, the crack propagates as a brittle and grows throughout the entire length of
the crystal. 

The increase of temperature to 200 K changes the character of fracture [7, 23]. Here the
rupture of interatomic bonds not lying on the crack propagation line in front of the growing
crack leads to crack blunting. As a result, the loose amorphous pre-fracture zone is formed in
front of the blunted crack facilitating its expansion; the zone consisting of vacancies and de-
fects that are characteristic for two dimensional crystals. The defects are known as pentagonal
defects or nuclei of sessile dislocations. Further fracture proceeds due to rupture of interatom-
ic bonds in front of the crack in the loose zone and the crack propagates slowly. 

High temperatures. At 350 K the crack begins to emit Frenkel-Kontorova dislocations
[7, 29] from its tip. These dislocations transform into Melker-Govorov dislocations [7, 30]
which in their turn into sessile dislocations and at last into voids. In parallel with this mech-
anism the other process is observed. With increasing temperature the free length of disloca-
tions emitted by the crack decreases according to [31] 

D/T91
2)T(

θ
λλ

+
=

.
Here  λ is the free length,  T is the temperature,  θD is the Debye temperature. For copper  θD

=339 K, therefore the free length of dislocations at 350 K decreases more than five times. As
a result, the crack grows emitting and absorbing continuously its own dislocations. If to ob-
serve the crack at large intervals, one can come to the conclusion that the crack grows, as in
the case of brittle  cleavage at  low temperatures,  due to successive rupture of interatomic
bonds at its tip without crystal relaxation. In reality, the growth is a complex process. It is
connected with emitting Frenkel-Kontorova dislocations, but these dislocations have no time
to go away from the crack and so under the action of tensile stress they transform into Melk-
er-Govorov dislocations, and the latter into sessile dislocations which are absorbed by the
crack. As a result, the crack changes the direction of growth many times propagating along
different slip lines by jumps, so that the fracture surface has numerous small jogs. At the
macro level it corresponds to ductile fracture. If to introduce the vector of crack propagation
that passes from the end of notch crack to its tip, then it turns out that the angle between this
vector and the initial orientation of the crack is close to 20°. It is interesting to note that frac-
ture mechanics predicts just the same value for local fracture in the form of generalized nor-
mal fracture [3]. At that, the minimum fracture load is attained that is equal to the 0.97 Grif-
fith load. Apparently at high temperatures and large strains the crystalline structure (discrete-
ness of a model) does not influence on the direction of the vector of crack propagation.

We have considered some typical results of molecular dynamics simulations. The main
merit of molecular dynamics lies in the fact that it introduces temperature into consideration
and thereby allows go beyond the scope of mechanics. As a consequence, we can pass from
the macroscopic notion of brittle and ductile materials to the notion of brittle and ductile frac-
ture associating the mechanism of these processes with the type of a growing crack. As a res-
ult, we are led to the following notions: brittle and ductile crack. This provides a possibility
of separating crack dynamics and nature of a material. 

Problem of potentials. This problem is tight connected with the problem of a crack tip.
Really, as pointed out above, the first molecular dynamics investigations of cracks were made
under undue influence of fracture mechanics; see e.g. the reviews [34, 35]. At that time the
main efforts went into solving the problem of crack tip. The investigators introduced various
nonlinear atomic forces not thinking out their physical basis. Transition from three-dimen-
sional systems to two-dimensional ones had allowed increase a size of crystals and study
crack cleavage and dislocation emission at a larger scale [34, 35]. The progress in computer
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facilities made it possible to return to three-dimensional crystals [36, 37]. Those simulations
had revealed suddenly an entirely new aspect of simulation problem. Whereas the Johnson α
iron exhibited brittle cleavage, the Morse  α iron showed spontaneous dislocation emission
and twin nucleation at a crack tip leading to crack blunting observed experimentally. 

Two important conclusions followed from these earlier simulations:
• The results of molecular dynamics simulations depend on the interatomic potential

used,
• The long-range potential is more suitable for α iron and probably for other transition

metals.
That discovery gave impetus to develop new interatomic potentials for transition metals. The
new potentials took into considerations not only pairwise interaction, but also many-body in-
teractions  [38].  Those  potentials  became  very  popular,  for  example,  the  embedded  atom
method (EAM) [39]. The results obtained in this work were quite fantastic. The simulation
had shown that in nickel a crack, created by removing a part of an atomic layer, behaved in
such a way as if nickel were an inherent brittle metal that contradicts to all experimental data.
What is the reason? One of the reasons is that the construction of the embedded atom poten-
tial is based on the same principles as the construction of their predecessors, empirical pair
potentials [40], so that the new potential incorporated the drawbacks of their predecessors.
The crucial drawback is that they are short-range functions of an interatomic distance [41,
42]. As a result, the size of crack-tip region d (Fig. 8) is implicitly reduced to zero that in its
turn reduces to zero all the efforts of the specialists in fracture mechanics. 

Another drawback of short-range potentials lies in the fact that, in spite of adding the
multi-body terms, they do not allow describe the difference between individual metals [43].
The clearest evidence was given by the large-scale simulations of brittle and ductile failure in
f.c.c. crystals [44]. In spite of the number of atoms in a three-dimensional slab amounted to
100 million, the authors were unable to discover the difference in behaviour of the Lennard-
Jones nickel, the Morse nickel, and the EAM nickel. The authors came to the following con-
clusion: “We should state our concern that using any potential for a real metal through the en-
tire range of strain to failure is highly questionable and should be scrutinized by doing first
principle calculations”. 

Really, the intrinsic property of metals is a long-range interaction between ions [45-47].
In due time, we have developed the long-range potentials for nickel [48] and α iron [49] de-
rived from the pseudopotential theory. These potentials were used with success for modeling
large clusters of vacancies in nickel and α iron that led to explaining the nature of swelling of
these metals [50, 51]. The long-range interatomic potential, based on physical grounds and
obtained by quantum mechanics methods using the pseudopotential theory, demonstrated its
effectiveness for studying crack nucleation and growth in three-dimensional crystalline alu-
minum [52].

3.2. Noncrystalline materials
Here and below we restrict ourselves to a recital of established computer simulation results
because a theory of these phenomena in the most cases is absent. 

Amorphous  materials. Molecular  dynamics  simulations  of  two-dimensional  systems
have revealed that a crack can be nucleated inside of a torn boundary of disorientation of two
adjacent crystalline regions of amorphous material  [53,  54].  The cracks propagate mainly
along these boundaries.

Polymers. Molecular dynamics simulations of polyethylene tension [55] have shown that
at first an initial globule was transforming into an oriented polymer. After that fracture was
similar to that of a chain crystal [27], i.e. extension was going due to rupture of covalent C–C
bonds. At that, cracks propagated parallel to tensile force. 
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3.3. Carbon nanotubes 
Tension of achiral single wall nanotubes. At low temperatures (100 K) the fracture of

an achiral single wall nanotube develops in a plane normal to a tensile force and has brittle
character [56]. At high temperatures (1300 K) the fracture embraces a larger area and pro-
ceeds at an angle to a tensile force as if shear stress were acting. At that, the stress-strain
curve normal to the tensile force has oscillations. This indicates that a crack propagates by
jumps. The structure snaps testify that we have a ductile crack. 

Tension of chiral single wall nanotubes. At low temperatures (100 K) the fracture de-
velops through rupture of interatomic bonds independently in two nonadjacent regions and is
accompanied by local compression of the damage regions [57, 58]. The structural changes are
similar to those of achiral nanotubes at high temperatures. At middle temperatures (500 K)
the fracture does not differ significantly from that of at low temperatures. At high temperat-
ures (1100 K) the fracture character is very similar to that of a chain crystal that models a
highly oriented polymer [27]. At the macroscopic level it corresponds to polymer splitting
along a tensile force. Just the same process occurs in a carbon nanotube at the nanoscopic
level.

Compression of achiral single wall nanotubes [59]. At low temperatures (100 K) the
fracture develops through rupture of interatomic bonds in the middle region of a tube and is
accompanied by extrusion of the damaged region. At middle temperatures (500 K) intrusion
is added to extrusion. At high temperatures (900 K) both processes proceed to a larger extent.
The structure of the fracture zone consists of a set of various conformations that were ob-
served in fullerenes. In all cases fracture develops at an angle of 45° to the nanotube (com-
pression) axis.

Torsion of achiral single wall nanotubes [60, 61]. At low temperatures (100 K) the
fracture develops mainly in a narrow band normal to the nanotube axis. It has a brittle charac-
ter. However, at first all hexagonal cells of the fracture band deform as in the case of shear,
so the fracture band behaves itself as a shear band. At that, the anomalously stretched cova-
lent bonds appear, and then they break. At room temperature (300 K) the fracture has a brittle
character and is accompanied by extrusion of the damaged region. Qualitatively it resembles
the compression fracture at low temperatures. At high temperatures (1200 K) the ductile fail-
ure occurs. Here a crack propagates at an angle of ~25° to the nanotube axis. Unusual fracture
takes place at intermediate temperatures (600 K). Here at first compression occurs and only
then fracture. Qualitatively the structure resembles that of forming under tension at the same
temperature interval. In the region bordering the crack there form anomalously stretched co-
valent bonds. 

Models of fracture and cracks. The analysis of molecular dynamics experiments shows
that the fracture of carbon nanotubes in some respects resembles the fracture of crystals and
in others that of polymers. In [57-61] we have suggested some models that allow characterize
the fracture quantitatively. However the models have a phenomenological character, so we
will not consider them. 

4. Solitonic theory of brittle crack motion
Potential  relief.  Consider  the  quantitative  physical  model  of  brittle  propagation of  a

crack. The mathematical analysis always has to deal with idealization. The problem lays in
the fact that it necessary to find the best idealization and here the right setting up a problem is
of greater importance than simply solution. The most important part of a crack is its tip. Here
the rupture of an interatomic bond leads to the transition of its atoms from a volume to a sur-
face (Fig. 8). As a consequence, the crack grows and propagates. 
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Imagine the crack growth as the motion of atoms of a bond being ruptured in a phase space,
i.e. as the motion on a certain energy surface (Fig. 9). The surface has two minima; the left
minimum corresponds to the atoms in the volume of a material and the right one does to the
same atoms on a crack surface in the state of equilibrium (D. Stuart, O. Andersen, 1953;
G.M. Bartenev, 1954) [28, 62]. 

Therefore the fist step is to calculate a realistic potential relief. That can be done as fol-
lows. Within the nearest neighbor approximation, the problem appears at first glance to be
equivalent to that of the potential of an atom which is the middle one of a three-atom chain
being stretched.

Fig. 8. Propagation of a crack as the motion of atoms from a volume to a surface, caused by
the rupture of interatomic bonds.

Fig. 9. Motion of rupturing bond atoms on an energy surface during crack propagation 
(a dotted line). Here U is the potential energy, ζ is the strain of an interatomic bond being

stretched (scheme).

The quantitative distinction of the chain from a crystal consists in the following. In the crystal
the left minimum is zV times is deeper, and the right one in zS  times deeper; zV, zS being the
coordination number in a volume and on a surface, respectively. Beginning with some strain
(bifurcation point),  a  single-well  potential  of  the inner  atom (Fig.  10a)  transforms into a
double-well potential (Fig. 10b). As a result, the internal atom finds itself in an unstable state
at the top of the barrier that separates two wells of the symmetric double-well potential and so
beyond the bifurcation point this atom falls into one of the wells (Ya.I. Frenkel, 1935). For
the Morse potential, the formulas describing such quasi-static process are given in [7, 63].
However the three-atom-chain model has an essential drawback: one of two atoms of the
stretched bond belongs always to one of two grips, although a crack usually nucleates far
away a grip. 

In reality, the process is more complex and the more realistic is a four-atom- chain model
[7, 64]. According to the molecular dynamics simulations, the atoms of a bond being ruptured

a

  a+Δa
x

y
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are moving[7, 64](Fig. 10c), which the main minimum is below than that of for the quasi-
static deforming (Fig. 10b). For the Morse potential, the formulas describing such dynamic
process are given in [7, 64]. It might be well to point out that the calculated potential closely
resembles the imaginary one (Fig. 9).

Fig. 10. Potential of an internal atom versus strain: a) under a bifurcation point, b)beyond
a bifurcation point, c) a four-atom model; potential is shown only for one of internal atoms.

Equation of a moving crack. The potential relief obtained helps to explain some results
of molecular dynamics simulations but does not solve the main problem describing the dy-
namics of brittle crack growth. Consider a two-dimensional square lattice of atoms in which a
crack of  normal  fracture  propagates.  Let  in the  rectangular  system of  coordinates  xy the
tensile load σ is applied along the axis y normal to the line of crack propagation (Fig. 8). As-
sume that the crack is moving in the direction of the negative axis  x. Single out one of the
chains of atoms confining the crack and consider, for example, the upper one. Denote by un,
vn respectively the longitudinal (along the axis  x) and the transverse (along the axis  y) dis-
placement of atom n from its equilibrium position in the volume of a material. The length
change of the bond being ruptured can be written as 

a)vv()uua(a 2
1nn

2
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where  a is the lattice parameter. With crack growth the longitudinal displacement remains
limited but the transverse one can be very large, so passing from the discrete argument n to
the continuous coordinate x=na, restrict ourselves by the following terms 
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Here the low index denotes the differentiation with respect to x. From this it follows 
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The work of strain forces per one interatomic bond is defined by the expression
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and for the whole chain, if only the nearest neighbors interаct, by the expression
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Holding in the expansion of the function [Δa(x)]2 the terms of the fourth order with respect to
vx, one obtains
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The kinetic energy of the chain is equal to 
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where m is the mass of an atom.

In order to find the equation of motion, one can use the variational principles of mechan-
ics [7]. They separate real motion from other possible. The real motion of a mechanical sys-
tem is such for which the physical value having the dimension of the product of energy by
time t has the minimum value. If to take the Lagrange function L=Ekin-U and to write down
the integral 
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we obtain the Hamiltonian action function (W.R. Hamilton,  1835).  This functional  is the
mathematical expression of the least action principle which can be written also in the form 

0S =δ .
Here δ is the symbol of the isochronous (incomplete) variation for which the time is not vari-
ated. In our case the Hamiltonian action function has the form of the double integral
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The extremum conditions for a double integral can be written as the system of partial de-

rivative equations [65] obtained by M.V. Ostrogradskij (1855). Since the subintegral function
does not depend explicitly on the functions u (x, t) and v (x, t), Ostrogradskij’s equations have
a simpler form [7] 
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For small longitudinal displacements Ostrogradskij’s equation transforms into the common
equation for string vibrations

0ucu 2 =′′−˙̇  .
Here u″=uxx, c=a (k/m)1/2 is the velocity of longitudinal waves. The equation has the solution
in the from of a monochromatic wave 
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where q is the wave vector directed along the axis x, ω=cq is the frequency. 
For large transversal displacements we leave, as before, the terms of the fourth order de-

rivatives with respect to v. Then we obtain in series 
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and the equation of motion takes the form 

0vu)v(
2
3vu

4
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c
1 2IV

2
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⎢⎣
⎡ ′+′−′+˙̇

 , 

where the character strokes denote the differentiation with respect to x. 
We seek the solution in the wave form

)tVx(v)t,x(v −= .

Such waves travel at the constant velocity V and satisfy to the linear wave equation
0vVv 2 =′′−˙̇  .

At that, the differential equation with partial derivatives transforms into the ordinary differen-
tial equation

0v)v(
2
3vu
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Vvu

4
a 2
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⎛ ′++′
 .

Denote v′=χ, where χ  is the tangent of shear angle induced by the large transversal displace-
ments of atoms. Then the equation takes the form

0
2
3u

c
V

4
ua 2

2

22

=′−′⎟⎟
⎠

⎞
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⎝

⎛
′++′′′

′
χχχχ

 .
Sharp notch. The solution can be obtained by the method of successive approximations.

Setting in the first approximation u′=0, we obtain 

c
V3/2=χ

or

constx
c
V3/2v +=

.
By virtue of the boundary condition v/x=0=0, const is equal to zero, so that

)tVx(
c
V82.0v −=

.
This solution describes a brittle crack in the form of a triangular sharp notch. The velocity of
crack propagation does not depend on a crack length and applied stress, but depends, through
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the velocity of longitudinal waves, on an elastic modulus and a material density. In our model
the shear angle corresponds to the angle of crack opening φ, i.e. 

ϕχ tan=
or

c
V82.0tanarc=ϕ

.
Therefore, the more is the velocity of crack propagation, the larger is the angle of crack open-
ing. Notice that the angle of crack opening is a more convenient characteristic than simply
opening. 

Crack as a soliton. In the second approximation we take into consideration a local stress
field in the vicinity of a crack tip. We average the local stress putting u′ = – <ε>. Then the
equation takes the form 

0
2
3

c
V

4
a 2

2

22

=′+′⎟⎟
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>< χχχεχε

 .

Upon integrating with respect to x, we obtain 
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 .

Let us multiply the equation by χ′ and integrate once more with respect to x. This leads to the
equation

Ef
c
V4)(a 42

2

2
22 =++⎟⎟
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⎞
⎜⎜
⎝

⎛
><−−′>< χχχεχε

 ,

where f, E are constants. Rewrite the equation in the form

( ) E,V;U)(a 22 =><+′>< εχχε .

The equation can thus be interpreted as the energy conservation law for a non-linear os-
cillator if we take x be the time, χ is the dimensionless coordinate of a fictitious particle hav-
ing the mass 2<ε>a2, and E its total energy. The particle moves in the field of the potential
energy 

( ) χχεχεχ f
c
V4,V;U 2

2

2
4 +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
><−−=><

.
Let us discuss the form of the potential energy. The constant f is the force of an external ho-
mogenous field in which the chain of atoms is enclosed after the crack nucleation. The sole
external force that is acting on the chain is the compression force that displaces the atoms out
of the equilibrium positions at the distance (–vε0a). Here ν is Poisson’s ratio, ε0 is the tensile
strain along the axis y normal to the growth direction of the crack. The force can be taken into
consideration if to replace c and <ε> with  c(ε0) and <ε(ε0)>, respectively, but these correc-
tions are small. 

Putting f=0, we obtain

( ) 24 A,V;U χχεχ −=>< ,
where 
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( )><−= ε22 c/V4A . 

The extremum condition leads to the equation 
0)A( 2 =−χχ . 

In general, this equation has three real roots. The first root, χ=0, exists always, two others are
defined by the expression 

><−±=±= εχ 2)c/V(2A  .

Thus we have a single-well potential at A<0 (Fig. 10a), and a double-well one at A>0 (Fig.
10b). As a consequence, in the general case we have anharmonic vibrations, but in a particu-
lar case solitary waves can occur at the definite values of E, V, <ε> [7].

From the energy conservation law follows that 

( )
><

><−
±=

ε
εχχ ,V;UE

a
1

xd
d 

.

Introduce the dimensionless coordinate
)a/(x ><= εξ .

Taking into account 

ξε daxd ><=  
write down in the implicit form the tangent of shear angle χ 
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 .

Consider the particular cases. At E=0 we have
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where ξ0 is a constant. Consequently 
1

0 AArch)(A −=−± χξξ , )(AchA 0
1 ξξχ −=−

,

and we obtain the soliton

)(AhsecA 0ξξχ −= .

Setting 
><−= εξ a/(tV0

for the wave running in the negative direction of the axis x (Fig. 8), write the soliton solution
in the canonical form

⎟
⎠
⎞

⎜
⎝
⎛ +

=
Δ

χχ tVxhsec0
.
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Here

><−== εχ 22
0 c/V2A  

is the soliton amplitude, 

><−

><
=

ε
εΔ
22 c/V2

a

 
is its width. At that

consta0 =><= εΔχ .

Accordingly the angle of crack opening is

⎥
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⎞

⎜
⎝
⎛ +

=
Δ

χϕ tVxschtanarc 0

.
Find the displacement along the axis y

∫∫ −><== ξξξεχ dA)(Aschaxdv 0 .

The integrals of trigonometric functions can be reduced to the integrals of rational functions
with the help of substitutions. For an even integrand the substitution 

)(Asht 0ξξ −=  
gives 

tArsh)(A 0 =−ξξ ,    
2t1/tddA +=ξ ,    

2
0 t1)(Ach +=−ξξ ,

and the integral takes the form

const)(Ashtanarcconstttanarc
t1
td

a
v

02 +−=+=
+

=
>< ∫ ξξ

ε .

The constant of integration can be found from the boundary condition 
0v x =∞−→ . 

With ξ→ – ∞, we obtain arc tan t→ – π/2, so const= π/2. Therefore

⎥
⎦

⎤
⎢
⎣

⎡
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⎞

⎜
⎝
⎛ +

+><=
Δ

πε tVxshtanarc
2

av
.

The solution has the form of a shock wave propagating in the negative direction of the axis x.
At that, the vertical displacement produced by the crack is equal to 

>< επ a  .
Consequences. Consider the main consequences that follow from the formulas obtained. 

1. There is the minimum velocity of brittle crack propagation

cVmin ><= ε ,

that enlarges with the increase of a load applied to a body. 
2. The crack-tip length can be uniquely determined as the half-width of shock wave
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><−

><
=

ε
ε
22 c/V4

ad
,

instead of very various static estimates [2, 9, 66]. Besides, this formula shows that the crack-
tip length decreases with the rate increase of crack growth. 
3. The analysis of the molecular dynamics experiments described above shows that for form-
ation of a stable crack in the triangular lattice, it is necessary to have the displacement along
the axis  y larger than the half of breaking length of an interatomic bond multiplied by cos
30°. Therefore 

4/3aa mεεπ >>< ,

where εm is the strain corresponding to the breaking length. Supposing that <ε>=νε, where ε
is the tensile strain,  ν is Poisson’s ratio, and setting  ν =⅓, we obtain the criterion of crack
propagation 

2
m

2
m2 06.0

16
3 εε
νπ

ε ≅>
.

Contrary to the Griffith criterion, this criterion does not contain such a difficulty defined
value as the surface energy [66]. If the interatomic interaction is described by the Morse po-
tential, then εm = 5.77 εc, where εc  is the strain corresponding to the ultimate stress limit of
the interatomic bond [7]. Usually εc ~ 0.18, so εm ≈ 1.04. Consequently the strain above which
the crack does not collapse equals ε ~ 6.5%. This value is practically coincides with the value
6%.  obtained in molecular dynamics simulations at 100K.
4. The criterion of brittle crack propagation in essence is the estimate of real rupture strength.
For the plane strain state it can be written as 

E
)1(16

3
22

2
m

c ννπ
εσ
−

=
.

For the coefficients accepted, we obtain
E067.0c ≅σ .

5. Conclusion
We have analyzed the main ideas and principles lying at the basis of mechanical models of
cracks. We considered advantages and drawbacks of these models. It is widely believed that
fracture mechanics rests on two foundations: some unified integral criterion that can be ap-
plied for studying quasi-static and dynamic crack propagation in all elastic and inelastic ma-
terials and relevant computer simulations [67, 68]. We have tried to shake up that point of
view.  In  our  opinion two pioneering works had changed engineering fracture mechanics,
namely,  the paper “The phenomena of rupture and flow in solids” (1920) by A.A. Griffith,
and to a lesser degree the paper “Fracture of metals: some theoretical consideration” (1948)
by N.F. Mott. Griffith introduced into engineering mechanics the physical quantity – surface
energy of a crack and gave a criterion of failure. Mott added another physical quantity – kin-
etic energy into Griffith’s criterion. 

The next substantial contribution was done by a large group of researchers who applied a
rather new computational physical method – molecular dynamics for studying the problems
of fracture. This approach revealed some features of crack behavior that one cannot imagine
on the basis of speculative knowledge. 
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And at last, we have tried to attract attention to the modern tendency in physics, using the
theory  of  solitons  [69–74].  Strictly  speaking,  the  nonlinear  waves,  now  known  also  as
solitons, were already applied with success in the theory of dislocations [75–78]. The nonlin-
ear equation for a moving dislocation was formulated in the paper “On the theory of plastic
deformation and twinning” (1938) by T.A. Kontorova and Ya.I. Frenkel long before the term
‘soliton’ was invented in 1965. The continuum approximation of their equation, under the
name sine-Gordon equation (1970), is widely used in different fields of physics [74]. Later in
the paper “Dislocations in two-dimensional crystals” (1988) by A.I. Melker and S.V. Gov-
orov, the generalization of the Frenkel-Kontorova equation was suggested to describe dislo-
cation behavior in molecular dynamics experiments [78].

The solitonic approach was also applied for studying fracture of one-dimensional systems
in the paper “Rupture-inducing fluctuations and solitary waves” by A.I. Melker [79]. Almost
simultaneously the paper “Solitonic model of brittle growth of a crack” (1987) was sent into
the journal “Fizika Tverdogo Tela”, but was rejected. The short note was published in 2002
[28], and the full version in Russian only in 2004 [7]. This example as well as a lot of others
[74,  80] shows once more:  “In spite of all  its  revolutions,  science remains conservative”
(Robert Oppenheimer).
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