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ABSTRACT

This study addresses a gap in the literature by investigating the reinforcement of mini-columns with 3D-
printed lattice structures to improve the mechanical performance of cementitious materials for structural
applications. Three reinforcement patterns honeycomb, re-entrant auxetic, and chiral auxetic were
designed and fabricated using two additive manufacturing methods: fused deposition modeling (FDM) and
digital light processing (DLP). Polylactic acid was used for FDM, and photopolymer resin for DLP printing.
Each pattern was printed in both cylindrical and hyperboloid geometries and embedded into concrete mini-
columns. The objective was to evaluate their influence on compressive strength, flexural behavior, and
strain performance. Testing, including ultrasonic pulse velocity, was conducted to assess internal integrity.
Results show that the type, placement, and geometry of the reinforcement significantly influenced
mechanical performance, with DLP-printed structures providing higher resolution and improved interfacial
bonding. Among the patterns, the re-entrant auxetic geometry yielded the highest enhancement in
compressive strength up to 18 % compared to unreinforced samples, demonstrating the potential of auxetic
designs in structural reinforcement.
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Introduction

There are different types of reinforced concrete and cementitious materials with fibers,
rebar, and other materials [1-4]. There is a new way to reinforce concrete via 3D-printing
(3DPRC) [5]. To understand the scope of this field, Wan et al. [6] used a 3D-printed
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reinforcement in water, so that when the beam breaks, the self-healing material can
repair the concrete. Another example is the 3DPRC under flexural cyclic loading; they
found that the maximum crack width was 20-80 pm [7]. Other samples investigated the
auxetic cementitious composites (ACCs). They used reinforced cementitious materials
with four types of auxetic patterns: "re-entrant” (RE), "rotating-square” (RS), "chiral” (CR),
and "missing-rib" (MR). They understand RE has 853 % highest ductility. Moreover, if the
water-to-binder ratio decreased from 0.4 to 0.3, then the compressive strength increased
by more than 18.5 % [8]. Salazar et al. [9] reinforced an ultra-high-performance concrete
(UHPC) beam with a 3D printed lattice. It has been observed that certain types of ultra-
high-performance concrete (UHPC) reinforced with 3D-printed lattice structures exhibit
higher compressive and flexural strengths than other samples. The literature review aims
to present the current state of 3D-printed reinforced concrete (3PRC) technology.
Although still emerging, this technology shows significant potential for enhancing
performance in both civil engineering and materials science applications. At the same
time, substantial efforts have been directed toward optimizing its structural performance
and fabrication processes.

To find the best pattern and shape for a concrete beam, Hematibahar et al. [10] first
added a hyperboloid structure to concrete to determine its compressive, tensile, and
flexural strengths. They found that the hyperboloid shell structure cannot affect tensile
strength; however, it does affect concrete strain. Later, the concrete beam was optimized
using various 3D-printed truss types. They printed four types of trusses (Pratt, Howe,
Warren, and Warren with vertical members) with the fused deposition modeling (FDM)
technique. Reinforced concrete with a 3D-printed Warren truss increased in flexural
strength by more than 18 %. Although the flexural strength of the beam increased with
the addition of Warren trusses to concrete, the strain condition was strain-softening [11].
Finally, Hematibahar et al. [12] find optimized strain-hardening 3DPRC. They reinforced
cementitious materials with honeycomb, 3D honeycomb, grid, and triangle at different
distances from the bottom of the cementitious beam. Overall, they found that although
the triangle and 3D-printed reinforced cementitious improved flexural strength more
than the control sample, the Honeycomb pattern increased the beam's flexural strength
and changed the reinforced cementitious's strain behavior to strain-hardening. Therefore,
pattern, distance, and placement method are the best ways to choose the real pattern.
Most studies focused on changing the concrete bearing and capacity in “concrete or
cementitious beam”. For example, Xu et al. [13] analyzed different types of 3D-printed
reinforced concrete with a mesh pattern under three-point bending of a concrete beam.
In another example, Meng et al. [14] investigated a special geometry with auxetic
behavior in both in-plane and out-of-plane directions, resulting in a 1.7 times higher
compaction energy than that of conventional cement-based materials. Finally, the current
research focused on improving the compressive and flexural strength of concrete beams,
either by creating new theories or by filling scientific gaps. To fill the gap of previous
studies, this paper decides to reinforced the mini column for the first time after optimize
the pattern and distance in the cementitious beam.

This article endeavors to reinforce the cementitious beam using four three-pattern
types (honeycomb, re-entering auxetic (RE), chiral auxetic (CA). This study aims to conduct
extensive research on cyclic loading, reinforced beams, and tension beams. Also, the
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current study aimed to examine mechanical properties, including compression testing for
each reinforced type, and to conduct nondestructive tests.

Material and Methods
Materials

Table 1 illustrates the mixture design of the concrete samples used in this study. The
components were cement, water, marble powder, straw powder, microsilica, and
superplasticizer (SP). Table 2 presents the microsilica chemical composition derived from
X-ray fluorescence (XRF) analysis. This analysis was examined using a Philips PW 2404 device.

Table 1. Mixture design for samples in this study (kg/m?)
Cement Water Marble powder Straw powder Microsilica SP
500 154 1400 100 100 12.32

Table 2. Microsilica chemical composition (wt. %).

SiO, 91.55
Al,O3 1.024
K.0 1.7%
MgO 1.02
Na,O 0.52
Fe,03 0.59
Ca0 0.45
SOs 0.35
P.0s 0.14
Cl 0.105
MnO 0.074
Zn 0.014
Pb 0.009
Rb 0.005
Sr 0.005
Cu 0.003
Ga 0.002
L.O. 2.37
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Fig. 1. Scanning electron microscopy (SEM) image of microsilica microstructure
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Marble powder can help mitigate many environmental hazards, such as air
pollution [15]. In addition, 10 % of marble added to cementitious materials increases the
compressive strength [16] (Fig. 1). Microsilica (silica fume) can increase the calcium
silicate hydrate (CSH) formation process in the hydration time. For example, some studies
added silica fume to cement and found that it can improve concrete compressive strength
by rapidly increasing CSH formation [17]. In another experiment, Shooshpasha et al. [18]
found that silica fume can fill voids in cement paste and increase the material's durability.
Superplasticizer can reduce water content and improve the mechanical properties of
concrete [19]. SP affected the concrete compressive strength and other mechanical
properties [20].

Methods

Etymology. In this project, researchers aim to test a new engineering method that will
make it easier for engineers to build columns in the future. Hence, this team introduced
this technology to the world for the first time and selected the name "Sotun” for it. "Sotun”
is the Persian translation of "column” in English. Since it is difficult to repeat the "Sotun”
word, the project will be called STN.

FDM and DLP methods. There are two types of 3D primary samples, using FDM
(fused deposition modeling) and DLP (digital light processing). DLP enables the
automated production of customized 3D parts using digital models. This technology has
played an important role in industries such as aerospace, medicine, design, and
engineering over the past 40 years. High accuracy in DLP can be achieved by selecting
appropriate process parameters (such as layer thickness, printing direction, curing time
and temperature, and laser power) and suitable materials. This study investigates the
effects of these parameters on mechanical properties, including tensile strength,
hardness, and surface roughness [21]. DLP is a precision 3D printing technology that uses
an ultraviolet (UV) laser to solidify a liquid photopolymer resin layer by layer (Table 3).
This process causes localized polymerization and the formation of complex structures by
controlled laser irradiation into the resin reservoir. DLP is particularly used in the
production of prototypes and industrial parts due to its high precision and excellent
surface finish. Parameters such as laser power, layer thickness, and curing temperature
directly affect the quality of the final product [22].

Table 3. Parameters of 3D-printed samples for DLP method
Printing resolution, mm Infill, % Exposure time, s
0.05 100 2.5

Rapid prototyping is done with technologies such as 3D printing and additive
manufacturing. In additive manufacturing, materials are layered on top of each other to
create the final product. One of the most widely used methods in this field is FDM, in
which the selection of process parameters, such as temperature and speed, directly
affects the quality of the manufactured parts. This method is expanding day by day across
industries and research, especially in PLA-based applications, due to its advantages such
as low cost, high quality, and short production time [23].
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3D-printed samples were fabricated using Quantum 3D printer with the following
printing parameters: nozzle diameter of 0.4 mm, raster width of 0.6 mm, layer height of
0.3 mm, and 100 % infill (Table 4). Creality PLA+ filament was used for all prints. Due to
the complexity of the sample geometries, extensive support structures were required
during printing and were carefully removed afterward. The samples consisted of two
general shapes: cylindrical and hyperboloid cylinders with a 5-degree angle from the
vertical axis. Each shape featured three different wall patterns: honeycomb, chiral
auxetic, and re-entrant.

Table 4. Parameters of 3D-printed samples for FDM method
Nozzle diameter, mm | Printing speed, mm/s | Layer height, mm | Infill, % | Raster diameter, mm
0.4 30 0.3 100 0.6

3D-printing pattern. In this study, three types of reinforcement patterns, honeycomb
(HC), re-entrant auxetic (RE), and chiral auxetic (CA) were used to fabricate mini columns
via 3D-printing. Each pattern was designed in both cylindrical and hyperboloid
geometries. Figure 2 illustrates the pattern types, their geometrical configurations, and
the corresponding printed structures.

Fig. 2. Reinforcement pattern types used in this study: (@) honeycomb (HC), (b) re-entrant auxetic (RE), and
(c) chiral auxetic (CA), each shown in both cylindrical and hyperboloid geometries

Each reinforced 3D print is divided into two samples: the hyperboloid with an 85°
angle and the cylinder. The 85° specimens were created to understand the hyperboloid
behavior with maximum effect under compressive loading. The diameter of each mini
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column is 5.5 cm, and its height is more than 11 cm. According to Fig. 2, the 3D-printed
reinforcement had a 1.5 cm cover over the external cementitious materials.

Figure 3 shows the research method. Firstly, the cementitious materials were mixed
by hand until the mixture was ready for embedding in the molds. Finally, three types of

reinforcement were placed in the molds, and cementitious material was embedded within
them.

Complete
FDM
.
+ Honeycomb N
-RE Install ‘r.-mentiuous
* Re-entrant Auxetic
-

¢ Chiral Auxetic

) Install Cementitious

Fig. 3. Step-by-step process of embedding 3D-printed reinforcement structures into concrete molds for
mini-column fabrication

Experimental methods. To determine the mechanical properties of concrete and
mini-columns, as well as to conduct nondestructive testing, the following specimens were
tested (Fig.4): concrete 5 x5 x5 cm?® cubes according to ASTM C109 [24]; reinforced
cement columns under compressive loading according to ASTM C39/C39M-21 [25].

The following tests were carried out: displacements at three points of the columns,
recorded by sensors installed at these three points to detect buckling; compressive
strength of each specimen according to ASTM C39/C39M-21 [25].

Fig. 4. (a) Cubical (5 x 5 x 5 cm?®) and rectangular concrete specimens prepared as reference samples;
(b) specimens placed under standard curing conditions
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Results and Discussion

In this section, three cases were investigated: the compressive strength of the control
sample, the reinforced concrete column using the FDM method, and the reinforced
concrete column using the DLP method.

Compressive strength

The structure formation of composite concrete columns with 3D-printed inclusions
(honeycombs, chiral auxetics, and re-entrant lattices) occurs through the formation of a
hierarchical internal architecture, where polymer metastructures manufactured using
FDM or DLP methods act as permanent formwork or a deformation framework that
determines the spatial organization of the stress-strain state in the hardening concrete.
The cell geometry determines local zones of stress concentration and redistribution, and
interfacial interactions at the polymer-cement stone boundary affect the integrity and
crack resistance of the system. However, full structural formation is limited by the
incompatibility between the physical and mechanical properties of the components and
the lack of chemical adhesion, which requires further optimization of the compositions
and co-printing technologies.

The compressive strength of the control specimen is 113 MPa; in fact, the control
specimen was reinforced without any pattern. This high strength, which is twice that of
traditional concrete, opens the broadest prospects for the development of these
materials.

FDM Method

This section presents the result of concrete reinforcement using FDM method.

CA samples. Considering Fig. 5, if the CA sample is used as the reinforced sample,
the compressive strength decreased at 85 and 90 degrees. Figure 5(a) shows that the
compressive strength increases to a point where it reaches its maximum value
(84.91 MPa). After reaching the maximum compressive strength, the material fails, and
the strength decreases. Changes in the slope of the graph can indicate structural changes
or internal cracks in the material. Figure 5(b) shows a compressive strength of
105.58 MPa. According to Fig. 5(b), the influence of 3D-printed reinforcement is observed.

100

%

¢ Strength (MPa)

o i

Compressive Strength (MPa)

0 0.001 0.002 0.003 0.004 0.005
0 0.001 0.002 0.003 0.004 0.005 0.006

(a) Strain, mm (b)
Fig. 5. CA sample. (a) CA85, (b) CA90
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HC sample. According to Fig. 6, the compressive strength of the samples increased
by more than 50 % for both types of reinforced concrete mini columns. In fact, according
to Fig. 6, the compressive stress-strain curve of HC85 shows less strain hardening than

that of HC9O0.
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(a) Strain, mm (b) Strain, mm

Fig. 6. HC sample: (a) HC85, (b) HC90

Carefully studying Fig. 6, we note some interesting features. Columns with
honeycomb reinforcement are much more effective than columns with chiral auxetic
reinforcement for two reasons. First, they show up with compressive strengths up to
2 times higher. Second, a much smaller degree of dependence of compressive strength
on the angle of inclination of reinforcement in columns is noted (171 MPa for 85 degrees
and 169 MPa for 90 degrees).

RE Sample. According to Fig. 7, if re-entrant (RE) reinforcement is added to concrete,
the compressive strength increases by more than 267 % for RE with 85 degrees and 77 %
for RE with 90 degrees.

f Smien
(a) Strain, mm (b) SRy Hun

Fig. 7. RE sample: (a) RE85, (b) RE9O

This reinforcement can be considered the most effective type compared to chiral
auxetic and honeycomb reinforcements. Achieving a high compressive strength
(369 MPa) enables these columns to be used in the most heavily loaded and critical
structures. On the other hand, there is a significant spread in compressive strength values
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of 170 MPa (from 369 to 199 MPa) if the column reinforcement angle is changed by
5 degrees (from 85 to 90 degrees).

The compressive strength of all samples except HC-90, HC-85, and CA-90 is lower
than that of the other samples. Considering Fig. 6, if concrete is reinforced with RE-90,
the concrete compressive strength improved by more than 42 % compared to the control
sample. Moreover, if concrete is reinforced with 25 %, its compressive strength will
improve.

However, in the previous structures, the reinforced concrete beam was found to be
the rational type, as concrete beams are honeycombed structures. This study found that
the sensible way to reinforce concrete columns is with RE90 and CA85 concrete. RE type
of concrete known as "re-entrant” and CA type of concrete known as “chiral”. The use of
honeycomb-reinforced CA concrete can significantly alter column properties. The CA form
can change the concrete from compressive to tensile and can also reduce its tensile
strength. Hence, all types of concrete, if reinforced with concrete by CA at an angle of
85 degrees [26]. Therefore, adding CA to concrete can increase the compressive strength
at 85 degrees, but at 90 degrees, the compressive strength decreased to 87 MPa.

Understanding the re-entry structure is very important because the structure must
be re-entered (RA). In this type of structure, it is essential to observe the energy
dissipation [27]. According to the combination of Figs. 7 and 9, if RE was washed for less
than the special amount (the less-than-control sample), the STN improved by more than
42 %. However, if RE was reinforced with 90°, the STN improved by more than 42 %.
In fact, the cement must increase the concrete's plasticity (Fig. 8). This ratio is also the
same for Chorial too [28]. Different types of materials must be used. First, there are
organic materials such as cellulose Nanocrystals, Inorganic materials such as gusted
twisted, and organic-inorganic materials such as protein MOF [29].

(a) (b)

T a

/'

 Plastic Regime /

Elastic

3

Fig. 8. Stress-strain curve of (a) RE under compression, (b) concrete

Considering the current study, horizontal resistance (F,) can be considered in three
conditions:
Concrete. stif fnes. has.to.be.more.than. Plastic.system.
E o= Concrete. stif fnes.is.equal. with. Plastic. system. . (1)
Concrete. stif fnes.is.less.than. Plastic.system.

Considering the investigation, the algorithmic system of this article was based on
Eqg. (1). To find the best form of compressive stiffness of concrete, it has to be greater
than the plastic system (RE90, RE85, and CA85). Moreover, if the system had been
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balanced, the RE85 configuration would have been appropriate. As shown in Fig. 7,
conventional concrete must improve the failure resistance of the specimen without
inducing additional brittleness [30,31]. Considering Fig. 6, the conventional concrete has
been cracked in shear types. Moreover, RE, HC, and RC had resistance against concrete,
whereas shear compressive. Other elements illustrate torsional strength; it means that
shear strength changes to twisting.

CA cracked hardly and assisted concrete very soon; overall, concrete, CA, and
cementitious materials show complete failure. Overall, 90 degrees is better than
85 degrees. The most interesting situation is twisted concrete from compressive strength
and shear conflicts. Meanwhile, twisted reinforced concrete. Overall, the maximum
indexes were pattern, degree of pattern, negative possessions, etc.

DLP samples

In this section, the reinforced concrete fabricated using the DLP method is investigated.

CA samples. According to Fig. 9, the compressive strength has improved by more
than 326 % for DLP method and CA shape with a 90-degree hyperboloid. For specimen
CA90, the reinforcement is directly engaged, whereas in CA85 the concrete is first
subjected to compressive loading.

essive Strength (MPa)
\

=
pressive Strength (MPa)
+

Compr
v
N\

4 4
10 f 100 o

0 0.02 0.04 0.06 0.08 0 0.01 0.02 0.03 004 005

(a) stram, mm (b) S mn, mm
Fig. 9. CA sample: (a) CA85, (b) CA90

In the additive manufacturing of SA reinforcement using DLP methods, the most
interesting feature is the strength under compression of the columns. Firstly, the
maximum compressive strength of 488 MPa is achieved at a reinforcement angle of
90 degrees. On the other hand, if the angle is reduced by 5 degrees, the compressive
strength decreases by an order of magnitude (48 MPa). This decrease necessitates careful
design and strict control of reinforcement quality.

HC Sample. Considering Fig. 10, the compressive strength decreased for HC90 and
improved for HC85. However, DLP-printed samples for honeycomb reinforcement are
twice as effective (in terms of compressive strength) as FDM-printed samples. This
effectiveness suggests the importance of the research results presented in this article,
which confirm the difficulty of predicting the achievement of target compressive-strength
values using various additive technologies to produce reinforcement cages of different
geometries.
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Fig. 10. HC sample: (a) HC85, (b) HC90

RE Samples. According to Fig. 11, the compressive strength increases by more than
30 % compared to conventional concrete samples. Despite the lower results compared
to FDM, it is worth noting the lower dependence on the reinforcement angle (142 and
139 MPa at 85 and 90 degrees, respectively).
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Fig. 11. RE sample: (a) RE85, (b) RE9O

Failure types

This part drives to two sections; the first part is about the failure of all samples. Moreover,
the second part is nondestructive testing for buckling STN.

Failure types of concrete. Two types of concrete failure have been shown in Fig. 12:
the cube surface has been separated, and the next layer of concrete has failed. In STN
columns, if different types of concrete have failed under compression, first the concrete
cover separated, and then the maximum tension was on the inside of the reinforced
concrete. Moreover, reinforced concrete prevents shear cracks (Fig. 13(c,d,e). Figure 13(c)
illustrates most of the concrete locked into the STN, Honeycomb structure. It should be
understood that if reinforcement with different types of concrete, such as Honeycomb
and other structures, is added, it shows better deformations and higher energy
(85 degrees) than other (90 degrees).
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Golias et al. [32] studied the carbon FRP column cladding of reinforced concrete
beams under cyclic loading and found that, if the column was reinforced with CFRP
cladding, shear cracks increased. Chandramouli et al. [33] used fiber-reinforced concrete
and a hybrid double-skin tubular column within concrete. They analyzed the fiber angle
and fiber thickness of the concrete tube. The results show that as fiber thickness and steel
increased, compressive strength improved. Overall, stripping reinforced columns away
from concrete columns can increase the compressive strength; at the same time, concrete
falls till concrete. The concrete in the tension and pressure zones cracks, not only in
columns, but also in beams, when loads are applied [34].

Fig. 12. Compression the cube samples: (a) cube samples under loading; (b) under loading and cracking;
(c) failure of cube samples
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Fig. 13. Failure of STN concrete; (a) control sample;(b) control sample; (c) honeycomb; (d) different of
styles of reinforced concrete; (e) RE-85; (f) CA-90; (g) failures of different concrete samples

Summary of results

This study investigated the effect of 3D-printed reinforcement patterns, including
honeycomb, recursive auxetic, and chiral auxetic structures, on the mechanical
performance of small concrete columns. The findings indicate significant differences in
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compressive strength, failure modes, and strain behavior based on the geometry and
location of the reinforcements. The results are discussed in the context of previous
research and practical applications.

The RE pattern, especially the RE85 and RE90 specimens, showed the greatest
improvement in compressive strength (267 and 77 %, respectively). These results are
consistent with previous studies that emphasized the high energy absorption and ductility
of eutectic structures under compression [27]. The uniform stress distribution in the
recursive geometry is likely responsible for this improvement. In contrast, the CA pattern
produced different results: the CA85 specimen increased strength by 165 %, while the
CA90 specimen decreased it. These results suggest that the angle of reinforcement
placement (85° vs. 90°) plays a key role in load carrying, probably due to differences in
stress redistribution and buckling resistance [26]. The honeycomb (HC) pattern, which
performed well in previous studies on beams [12,30], showed a moderate improvement
(50 %) in columns. This difference highlights the importance of the specific design of
stiffeners for different structural elements (beams vs. columns) and loading conditions.

The 85° hyperbolic design performed better than the 90° cylindrical specimens in
all. models (RE85 vs. RE90). This result supports the hypothesis that angled
reinforcements are better able to restrain shear stresses and delay crack propagation, as
observed in hyperbolic shell structures [10]. The failure modes also confirmed that the
85° reinforced columns had a more ductile behavior, whereas the 90° columns failed
abruptly due to localized shear cracks.

The DLP-printed CA90 specimen showed a significant increase of 326 % in
compressive strength, which was much higher than that of the FDM-printed specimens.
This result indicates the influence of printing accuracy and material density on structural
performance. The high accuracy of DLP probably maintains the integrity of the eutectic
geometry better under load. However, the HC and RE patterns in the DLP method showed
less improvement, indicating that material brittleness or adhesion between concrete and
DLP polymers may need to be optimized [30].

Destructive tests showed that the reinforced columns had greater resistance to
shear cracking than the control specimens. For example, the HC pattern confined the
concrete within its cells, preventing complete collapse. These findings are consistent with
studies on FRP-reinforced columns [32,34], but 3D-printed reinforcements offer greater
design flexibility and environmental benefits. For example, eutectic patterns can reduce
material consumption while maintaining strength, which is consistent with sustainable
construction goals [16,35-46].

This study focused on small columns; generalizing the results to real columns
requires further investigation of printability and cost-effectiveness. Long-term durability
under cyclic loading and environmental conditions (such as humidity and temperature)
needs to be tested. Future research could explore hybrid reinforcements or multi-material
printing to improve surface adhesion.

The production and implementation of these mini-columns in large-scale
construction open up broad prospects for the development of small businesses in the
regions, consistent with earlier studies.

Although the use of 3D-printed auxetic and re-entrant structures for strengthening
concrete columns demonstrates promising mechanical properties (increased impact
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strength, negative Poisson's ratio, and controlled deformation), their practical
implementation in construction practice is currently limited by technological, economic,
and regulatory barriers. Future research should focus on scalability, material
compatibility, and standardization to translate these innovations from the laboratory to
the construction site.

Conclusions

This study provides valuable insights into the use of 3D-printed reinforced concrete
(3PRC) to enhance the mechanical properties of mini-columns. The investigation of three
distinct reinforcement patterns, namely honeycomb (HC), re-entrant auxetic (RE), and
chiral auxetic (CA), shows that the geometry and placement of reinforcement significantly
influence the performance of cementitious materials under compression and flexural
loads. The results demonstrated that RE90 and CA85 reinforcement patterns increased
the compressive strength of the concrete by more than 40 % compared to the control
sample, with RE90 showing the greatest improvement. On the other hand, HC-90 and
CA90 patterns resulted in lower compressive strength, highlighting the importance of
selecting optimal patterns for reinforced concrete structures. Nondestructive testing and
failure analysis revealed that reinforced columns exhibited greater resistance to shear
cracking and improved energy absorption. This study fills a gap in existing research by
focusing on optimizing 3D printing techniques for concrete reinforcement, specifically for
mini-columns. The study offers practical implications for the design of more efficient,
durable, and sustainable concrete structures in future civil engineering applications.
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