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ABSTRACT

Theoretical models of misfit stress relaxation in heterogeneous crystalline nanostructures are reviewed in
brief. It is shown that the main channel of relaxation is the formation of misfit dislocations. Some
mathematical tools for continuum modeling of misfit stress relaxation through generation of discrete
dislocations in spherical and cylindrical nanostructures are considered with special attention to the strain
energies of the dislocations and the energies of elastic interaction between them. The critical conditions
and energy barriers for the formation of prismatic dislocation loops and straight edge misfit dislocations in
core-shell nanoparticles and nanowires with various types of cores, in Janus nanoparticles and nanowires,
in axially inhomogeneous nanowires with transverse interfaces, and in free-standing composite nanolayers
are discussed.
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Introduction

Heterogeneous crystalline nanostructures serve as the basis of modern devices in nano-
and microelectronics, optoelectronics, photonics, etc. It is well known that their physical
properties and performance characteristics strongly depend on elastic misfit strains
caused by differences in crystal lattice parameters. Under certain conditions, the misfit
strains and stresses relax through the formation of various defects [1-5], which can lead
to a significant deterioration in the properties of nanostructures. The most common way
of such relaxation is the formation of misfit dislocations (MDs) at the interfaces.
Theoretical and experimental studies of relaxation processes with the formation of MDs
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have been carried out since the mid-twentieth century (see, for example, some earlier
papers [6,7] and more recent books [8-13] and reviews [14-27]). However, the discussion
of the sources, mechanisms, and critical conditions for the appearance of MDs in real
inhomogeneous crystalline nanostructures is still of great interest [25-27].

The present paper offers a brief overview of very recent theoretical models of misfit
stress relaxation in inhomogeneous crystalline nanostructures — composite nanoparticles,
nanowires and nanolayers.

Mathematical tools for continuum modeling of misfit stress relaxation
through generation of discrete dislocations

The invention and comparison of different relaxation micromechanisms lead to the
conclusion that, in the vast majority of cases, the main channel of relaxation is the
formation of various dislocation configurations [1,2,28]. To determine and analyze the
critical conditions for their formation, some novel mathematical tools were developed.
In particular, new analytical solutions of the boundary problems in the theory of elasticity
for circular prismatic dislocation loops in a hollow elastic sphere [29] and in an elastic
cylinder [30] were obtained. Solutions were found for the strain energy of such
loops [29,30] and for the energies of pair elastic interaction between them [30,31].
The stress fields and strain energy of a circular prismatic dislocation loop surrounding a
cylindrical cavity in an infinite elastic medium were calculated [32] as well. All these
solutions were found by using the classical methods of the elasticity theory, which were
described in detail by Lurie [33]. Since the analytical formulas for the elastic fields are
rather cumbersome, here we show the expressions for strain and interaction energies
only that are of primary importance for theoretical modeling of the misfit-stress
relaxation micromechanisms.

In the case of a circular prismatic dislocation loop placed axisymmetrically in a
hollow elastic sphere (Fig. 1(a)), the elastic strain energy of the system is given by the
superpositions [29]:

E,=“E —mb fOC622|Z=ZOrdr, 1Zo| = a, (1)
0o Gb?c3 c c.
Ea = “E - 52D (7”) — 7 [6y5) s gyrdr, 120] < ap, )

where “E is the elastic strain energy of the loop in an infinite elastic medium,
b is the Burgers vector magnitude of the loop, c is the loop radius, z; is its position in the
sphere, a, is the radius of the cavity in the center of the sphere, G and v are the shear
modulus and the Poisson ratio, respectively, of the sphere material, ¢, = (a3 — z%)'/?,

D(k) = fon/z sin? t (1 — k? sin? t)~'/2dt is the elliptic integral [34], and &,, is the axial
component of the additional stress tensor that provides the fulfilment of traction-free

boundary conditions on the inner and outer surfaces of the hollow sphere.
The elastic strain energy “F reads [35,36]:

I nGb2c

E= mj(l;l; 0)|r=c—rcore,z=zor (3)
where J(1,1;0)|rzc—r, 2=z, = fooojl(zc)jl(zc(l — T.ore/C))dK is the Lipschitz-Hankel
integral [37], J1(t) is the Bessel function of the first order, and r.r is the dislocation core
radius. When ¢ >> 1., Eq. (3) is well approximated by the following equation:
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Fig. 1. Circular prismatic dislocation
loops (PDLs) in (a,c) hollow elastic
spheres, (b,d) elastic cylinders, and

(e) around cylindrical hole in infinite

elastic medium
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Here R is the radial coordinate (see Fig. 1(a)), 8 is the polar angle, and P () are the
Legendre polynomials. The coefficients A(l),B,El), C,EZ), and D,gz) are found from the free-
traction boundary conditions of the problem [29].

The graphical representation of the elastic strain energy E. is given in [29]. When a
circular prismatic dislocation loop is placed axisymmetrically in an elastic cylinder
(Fig. 1(b)), the elastic strain energy of the system is given by the superposition [30]:

2,52 0024272 2 _ 2
Eel — ©p _ Gb“at fo seteIg (ts)+wlif(ts) Zst;lzll(gzz;(l(‘i}sl)%[\(/zgl(s)Kl(s)+s Io(S)Ko(s)] dS, (6)
where t = c/a, w = s + 2(1 —v), (k) and Ko1(k) are the modified Bessel functions of
the first kind and the Macdonald functions, respectively.

The graphical representations of the elastic strain energy E. for the circular
prismatic dislocation loops in a hollow sphere and in a cylinder are given in [29,30].

The energy of pair elastic interaction between two coaxial circular prismatic dislocation
loops (denoted as PDL-1 and PDL-2) in a hollow sphere (Fig. 1(c)) can be written as a sum [31]:

Eint = ooEint + 7 int (7)
where the first term, ®E;,;, is the interaction energy of the loops in an infinite elastic
medium, while the second term, *Ej,, is caused by the effect of the inner and outer free
surfaces of the sphere.

As shown in [31], the term “Ej,; reads:

B = "2 [y (1,1;,0) + 2y, 0| L 2= 2, (8)

where b, and b, are the Burgers vector magnitudes of the loops, c¢; and ¢, are their radii,
z, and z, are their coordinates with respect to the sphere center (Fig. 1(c)); £ = 0 for z: 2 a,,

B(l)Rk2+ (k+4 4v) + 2

1-v

|z— Zz|

and¢ = [a} — z{ forzi<a, and J(m,n; p) = fooo]m(K)]n(KT'/Cz) exp[ — k|z — z,|/c,]kPdk.

The term * lrltis given by [31]:
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where AEIZ), B,(lz), C,(lz), and D,(lz)are the coefficients determined in [29] from the boundary
conditions on the free inner and outer spherical surfaces, Q,; and T,, are the following
polynomials:

—1)S _ _ 1
Qn: = ZE’;/OZ] 251(511) (M)(2n725)zn ZS(Rf(S"' ) _ J2(s+D), (10a)
—-1)5 _ _ _ _
Tn,l — Z[iﬂ]#(?)( ZTanS)Z:‘[l ZS(Rl 2k+2s5+1 _ ¢ 2k+25+l). (10b)

§=0 2n(—2k+2s+1)
Here [n/ 2] denotes the greatest integer < n/2, (”) are the binomial coefficients, and

{=2z for z12 ap, and {=a, for z1< a,.

In a cylinder of radius a (Fig. 1(d)), the energy of pair elastic interaction between
two identical axisymmetric circular prismatic dislocation loops of radius ¢ with the
Burgers vector magnitude b and spacing h is given by the sum (7), the terms of which can
be written as follows [30]:

0 Gb%c

Eine = 22 (J(LL0) @lymp + 2 (LL Do), (11a)
N _ Zszct 0 52212 (ts)+wI?(ts)— Zstll(ts)lo(ts)[wIl(s)Kl(s)+szlo(s)Ko(s)] hs

int = 4, fO S213(s)-wlI?(s) oS ds. (11b)

The interaction energies for the circular prismatic dislocation loops in a hollow sphere
and in a cylinder are illustrated in detail by maps [31] and plots [30], respectively.

The total (including the energy of the dislocation core) energy of a circular
prismatic dislocation loop surrounding a cylindrical cavity in an infinite elastic medium

(Fig. 1(e)) [32] is:

B = s I3 =0 (7) = 20 (240 + BB [K(B) — thy (BO)] +

+A41B[K2(B) — K, (BO1}AB},
where the first term is the total energy of the loop in an infinite elastic medium [36,38],
yis the core energy parameter ranging from 1 for metals to 4 for semiconductors [38] and
the coefficients A; and B; are given by the following equations [32]:

(12)
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A= B FG®) o (133)
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n K1(b’t){Z(v—1)[b’zlo(ﬁ)Ko(B)+W11(B)K1(ﬁ)]—w}}
BIWKE (B)-B2K§ (B)] '
Herew = %+ 2(1 —v).
The energy plots illustrating Eq. (12) are represented in Ref. [32] in detail.

Critical conditions for the onset of misfit dislocations in core-shell nanoparticles

Using the solutions for the self strain energies of circular prismatic dislocation loops
placed in elastic bodies of different geometry (see the previous section), the critical
conditions necessary for the formation of circular prismatic misfit dislocation loops
(MDLs) at the interfaces in core-shell nanoparticles with different types of cores were
determined. In particular, the critical conditions for the formation of MDLs in solid [39,40]
and hollow [41] single-crystalline and in solid decahedral [42] spherical nanoparticles
were considered. To model the latter, a new solution for the elastic fields of a wedge
disclination in an elastic sphere [43] was used. The cases of cores in the form of a
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solid [39,42] and hollow [41] sphere, as well as in the form of a hemisphere resting on
the equatorial plane of a nanoparticle [40] were investigated.

Within the continuum approach, the calculation scheme was based on the
assumption that the difference in the total energy of the system under study AE due to
the onset of the first MDL can be approximated by the following general formula [44]:

AE = E, + E + Eipy, (14)
where E, is the elastic strain energy of the MDL in the system, E. is the energy of the
MDL core, and E,,; is the energy of interaction of the MDL with the initial misfit stress in
the system before the MDL appearance there.

The formation of the first MDL is energetically favorable if AE < 0. Therefore,
the equation AE = 0 gives the critical conditions for its onset in the system. Since the
energy difference AE (more precisely, its third term Ej,.) is always in linear proportion
with the misfit parameter f (here we assume for definiteness that f > 0), this equation is

always simply resolved with respect to a critical misfit f. given by:
_ Ee+E¢

fo= -, (15)

int

where El.*m = E.,:/f- Thus, the critical (necessary) condition for the formation of the first
MDL in the system can be written as f > f.. As a result, the analyzes of the system
stability with respect to its transition from the coherent state (with no MDL) to the partly
relaxed (semicoherent) state with a MDL comes down to studying the dependences of the
critical misfit fc on other parameters (geometric, material, etc.) of the system.

Consider, for example, the case of a spherically symmetric core-shell nanoparticle
studied in [39]. It was assumed that the nanoparticle consisted of an elastically isotropic
core and an elastically isotropic shell with identical elastic moduli but different
lattice parameters a: and a, (Fig. 2(a)). The lattice misfit was defined by the parameter
f=2(a: - a;)/(a1 + a;) > 0. The outer and inner radii of the shell were denoted by a and R,,
respectively. During the coherent growth of the shell on the core, misfit strains and
stresses should appear in the core-shell nanoparticle [1,2]. For some values of the system
parameters f, a, and Ro, the interface was supposed to transform into a semicoherent state
corresponding to the formation of a misfit dislocation at it. Owing to the spherical

Fig. 2. Model of a circular MDL with the Burgers vector b and the tangent vector [ at the interface
in a core-shell nanoparticle. The spherical (R, ¢, 8), cylindrical (7, ¢, z) and Cartesian (x, y, z) coordinate
systems are shown. The geometric parameters of the system are the nanoparticle radius a,
the nanoparticle core radius Ry, the MDL radius ¢, and the MDL coordinate z,. The lattice parameters a;
and a; satisfy the inequality a: > a,. Adopted from [39]
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symmetry of the system, it was expected the formation of a vacancy (for f> 0) MDL around
the core, which would partially compensate the lattice misfit. It is worth noting that
earlier this problem got an approximate solution [2,12] for the case when the MDL was
located in the equatorial plane of the nanoparticle and the core and shell were
characterized by different elastic moduli.

In the elastically homogeneous case [39], the first term E, of the energy difference
AE given by Eq. (14) can be derived from Eq. (1) in the limiting case of a, = 0. The second
and third terms of AE are [39]:

Geb?z
¢ 2a-vy 3 (16)
fi =~ 2 ohery (1-0), @

where Z = Ina and the parameter o can vary in the range from 1 to 4 when reo. = b [38].
In numerical calculations of [39], it was assumed that Z= 1.

Introduction of Eq. (1) at a, — 0 with Egs. (4), (5), (16) and (17) to Eq. (15) gave an
analytical formula for the critical misfit f. [39]. Figure 3 shows the dependences of f. on
the principal geometric parameters of the system: (a) the normalized position zo/Ro of the
MDL for the two different outer radii of the nanoparticles a = 50b (solid curves) and 200b
(dashed curves) with different values of the normalized core radius Ro/a and (b) the
normalized core radius Ro/a for different values of the nanoparticle radius a at zo = 0 (here
the solid and dashed curves correspond to the strict [39] and approximate [2,12]
solutions, respectively). Each of these curves separates the phase space (Ro/a, f) into two
regions. In the region under the curve, the MDL formation is energetically unfavorable,
while in the region above the curve, it is energetically favorable. As is seen from Fig. 3(a),
for any value of R¢/a, the minimum value of fc is reached for the MDL position in the
equatorial plane of the nanoparticle (zo = 0). Therefore, the first MDLs are expected to
form in equatorial sections of the nanoparticles.

In Fig. 3(b), the dashed curves correspond to the approximate solutions obtained
in [2,12] for a thin shell on a massive core (Ro/a —1) and for a massive shell on a small
core (Ro/a << 1). It is seen that the strict solution (15) coincides almost completely with
the approximate solution for large nanoparticles and differs significantly from it for small
nanoparticles, when the approximate solution somewhat overestimates the critical misfit
parameter f..

For a fixed misfit parameter f, which, in the diagram (Ro/a, f.), is represented by the
horizontal line, the points of intersection f = f. determine the critical values of the
normalized core radius Ry = Ry/a. The critical normalized radii Ry .; and Ry, ., are such
that the generation of an MDL is possible only in the range Ry . < Ry < Ry ; and
impossible neither for the extremely small core (R, < Ry, 1) nor for the extremely thin
shell (R, > Ry, ;). For example, at f. = 0.01 and a = 200b, the critical values of the
normalized radii of the cores are Ry, ~ 0.225 and R, ., ~ 0.935 (Fig. 3(b)). In absolute
units, these estimates give Ry, = 45b and Ry ., = 187b.

It is also seen from Fig. 3(b) that, for a given particle size, there is a minimum critical
misfit fomin, Such that at f < fomin, in the particle with a radius a the MDL generation is
energetically unfavorable for any value of the ratio Ro/a. For example, fomin = 0.005 for the
curve with a=200b and fcmin = 0.014 for the curve with a = 500b.
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Fig. 3. Dependences of the critical misfit fc on the geometric parameters of the system: (a) the normalized
MDL position zo/R, for the nanoparticle radii a = 50b (solid curves) and 200b (dashed curves) with different
values of the normalized core radius Ro/a and (b) the normalized core radius Ro/a for different values
of the nanoparticle radius a at zo = O (the solid and dashed curves correspond to the strict [39] and
approximate [2,12] solutions, respectively). The point (0.75, 0.03) corresponds to the experimental
observation of a perfect MD in the Au-FePts; nanoparticle with radius a = 29b [45]. Adopted from [39]
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The point with coordinates (0.75, 0.03) in Fig. 3(b) corresponds to the experimental
observation of a perfect edge MD in the Au-FePts nanoparticle with radius a = 29b [45].
It is seen that this point lies in the region f> f. (Ro/a) where the generation of MDLs was
predicted by the calculations [39].

A similar problem for a hollow core-shell nanoparticle was solved in work [41].
Figure 4 shows the corresponding model of a circular MDL placed at the core-shell
interface in the plane z = z,. In this case, the difference in the total energy of the system
AE due to the onset of the first MDL was approximated by Eq. (14), in which the first term

was given by Egs. (1) and (2), the second term by Eq. (16) and the third term by [41]:

4 1+v2 ( _ R_g) 1-(ap/Ro)?

Eqe==-312 1-(ap/a)®

(18)

a3

X Daz

Fig. 4. Model of a circular MDL with the Burgers vector b and the tangent vector I at the interface in a
hollow core-shell nanoparticle. The spherical (R, ¢, 8), cylindrical (r, ¢, z) and Cartesian (x,y,z)
coordinate systems are shown. The geometric parameters of the system are the nanoparticle radius q,
the nanoparticle core radius Ry, the pore radius a,, the MDL radius ¢, and the MDL coordinate z,. The
lattice parameters a; and g, satisfy the inequality a: > g,. Adopted from [41]

In the limit a,, - 0, Eq. (18) transforms to Eq. (17). As a result, the critical condition
for the MDL formation is given in this case by the inequality f > f., where the critical
misfit fc is determined by Eq. (15).

Figure 5(a) shows the dependence f.(zo/R,) for a =100b, R,/a = 0.8, and
different values of the ratio a,/a. It is seen that f. increases both with z,/R, and a,/a
ratios. It means that the most favorable position of the MDL is in the equatorial plane of
a hollow core-shell nanoparticle as is also the case with solid core-shell
nanoparticles [39]. It is also seen than both the MDL shift from the equatorial plane and
pore growth in the core decrease the energetic preference of the MDL generation in
hollow core-shell nanoparticles.
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Fig. 5. Dependence of the critical misfit f. of a hollow core-shell nanoparticle with outer radius
a = 100b on (a) the normalized MDL position z,/R, for the fixed normalized core radius Ry/a = 0.8,
and (b) the normalized core radius R,/a for the equatorial position (z, = 0) of the MDL, for different
values of the normalized pore radius a,/a. The dashed curves correspond to full core-shell
nanoparticles. Adopted from [41]

Figure 5(b) illustrates the effect of the R,/a = R, ratio on the critical misfit f.. Here
the curves f.(R,) were plotted for a = 100b, z, = 0, and different values of a,/a. They
have minima which give the minimal critical misfit f, ,;; such that no MDL can form at
f < fcminfor any R,. For f > femin, there is a range RO a<Ry< RO 2, in which MDL
generation is energetically favorable. When R, < RO, 1 Or Ry > RO, o2, the coherent state
of the nanoparticle is more preferable. With raising f, this range increases. Similar results
were reported earlier for MDLs in solid core-shell nanoparticles [39] (see also the above
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discussion of Fig. 3(b)) and straight MDs in solid core-shell nanowires [46] and at the
interface between a (nano)tube and surrounding infinite matrix [47]. As is seen, the pore
strongly affects the curves f.(R,): they become narrower with increasing the pore radius
ap, and fomin increases as well. As a result, the range (Roc1, Roc2) decreases. Thus,
the region of parameter values, in which the MDL formation is energetically favorable,
drastically shrinks.

The most important practical issues from the model [41] are the dependences of
the minimal critical misfit f i, and the critical shell thickness h, = a(1 — Ry ;) on the
ratio a,/a (Fig. 6). It is seen from Fig. 6 that both f. i, and h. weakly depend on the
a,/a ratio until it reaches the value of about 0.8. However, when a,/a > 0.8,
they drastically grow with a,,/a. The authors of [41] concluded on a great potential in
developing coherent (MD free) hollow core-shell nanoparticles by using cores in the form
of thin-wall shells with the inner-to-outer radii ratio larger than 0.8.

| LA B —

007F T T
0.06 | ;]
005f - - :

0.04 F

0.03F .

ﬁ,min, hc /a

T
T B

0.02 F

T
i A

0.01 F

0.00b v v v
00 02 04 06 0.8 1.0

a,/a

T R R TR AN TN SO B

Fig. 6. Dependences of the minimal critical misfit f. ,;, and the critical shell thickness k. (at f = 0.02)
on the inner-to-outer radii ratio a,/a for a = 100b and z, = 0. Adopted from [41]

The solid and hollow core-shell nanoparticles considered in [39,41] were supposed
single crystalline (solid and hollow SC-CSNPs). Krauchanka et al. [42] extended this
energetic approach to the case of solid decahedral core-shell nanoparticles (Dh-CSNPs).
Indeed, the most of bimetallic CSNPs contain noble metals (Au, Ag, Pt and Pd) whose
nanoparticles are well known to be so-called pentagonal nanoparticles (PNPs) in the
greater part of their populations.

PNPs are multiply-twinned crystalline particles in the shape of either decahedron
or icosahedron, or of close morphologies [48-51]. As a result, PNPs possess five-fold
symmetry axes that are absent in bulk single crystals and pass through quintuple
junctions of twin boundaries. These axes can be described in terms of positive partial
wedge disclinations (WDs). For example, decahedral particles (DhPs) contain one WD [52],
while icosahedral particles (IcPs) contain six WDs [53]. Due to these WDs, PNPs are
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elastically strained and store high strain energy that can relax through generation of
various lattice defects [48,50,51].

The elastic model of a spherical DhP can be given by a partial positive WD piercing
the elastic sphere [43]. In solid DhPs, the WD stress relaxation was shown to occur
through the generation of axisymmetric circular PDLs [54]. For hollow DhPs, a model was
suggested that described the formation of multiple cracks at the twin boundaries with
subsequent agglomeration of the initial cracks into a unite five-foldstar crack [55].

For a Dh-CSNP that is a DhP covered with a shell of another crystalline material,
the superpositions of the WD and misfit strains and stresses were expected [42]. The
stress/strain state of a WD axially pierced an elastic sphere (Fig. 7(a)) was given in [43].
The authors [43] showed that in the area around the line of a positive WD is
hydrostatically compressed, while the peripheral area of the sphere is hydrostatically
stretched. They suggested that stress relaxation in the system could naturally include
nucleation of vacancies at the stretched surface of the sphere, their migration to the
compressed region around the WD line, and their coagulation with formation of a circular
PDL of vacancy type [54].

Fig. 7. Model of a Dh-CSNP in its (a) initial and (b) partially relaxed states. The Cartesian (x, y, 2),
cylindrical (r, ¢, z) and spherical (R, ¥, ¢) coordinate systems are shown. Adopted from [43]

In a Dh-CSNP withf > 0 (Fig. 7(a)), the formation of such a PDL could be effective
for both the WD and misfit stress/strain states (Fig. 7(b)). Since the equatorial planes are
the most favorable positions for MDLs and PDLs in SC-CSNPs [39,41] and DhPs [54],
respectively, it was suggested that the equatorial plane is the most favorable position of
a MDL in a Dh-CSNP, too [43]. In this case, the total energy change caused by the partial
relaxation in a Dh-CSNP reads [43]:

AE = Ec + Eq) + Einty + Eine ¢ + Est, (19)
where the first two terms are the core and strain energies of the MDL, respectively, as
before; Ejnw and Ej,¢ are the energies of interaction of the MDL with the WD and
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Fig. 8. Formation of a circular MDL of length L; with the Burgers vector b in the Dh-CSNP leads to the
formation of a monolayer with a step of radius d, height b and length L, around a pole on the free
surface of the shell. Adopted from [43]

misfit stresses, respectively; and E; is the energy of the atomic step that forms on the
Dh-CSNP free surface in the process of the generation of vacancies needed for the MDL
creation (Fig. 8).
The interaction energy Ejny is [54]:
Winew = ZnDbew [v ln% " 21+v(238+125v)  (7+V)(1+3V) 5

30(7+5v) 8(7+5v) 20
_ 2+oo (Av (2m+1)(2m2+4m+1+v) 2m ( )
m=2\'m m+1

+ B, t_2> thPZm(O)].
where R; and R, are the core and shell radii, respectively, of the Dh-CSNP (Fig. 7),

_ . i _9m2Mim 5 _  PmOm+2qdmTm _ _
t = R,;/R,, wis the strength of the WD, 4,,, = BT , B, = “a@m—ns, 1 m = (Zm
_ ___4m+41 _ (1-2v)(4m+1) _

Dm+ D 2m(2m+1)’ Tm = 2(m-1)m(2m+1)(2m+3)’ Sy =1t v+2m(1+2m+2v),

Pm==2v—14+4m(1+m),qn=14+v—4m3+ (3+2v)m,and m = 2,34, ....

The interaction energy Ej, ¢ is given by [54] Ejn. ¢ = —(8/3)7%Df (1 + v)bRZ(1 — t3).
The surface step energy E, was estimated as [54] E;  kmDb?R,+/1 — t%2/4 with k < 1.
It is worth noting that the terms like E;; have never been accounted for in previous
theoretical models of MD formation. The authors [54] showed that it may give a strong
effect on the critical conditions for this process.

When the critical conditions are formulated as in the aforementioned
models [39,41] in terms of the misfit parameter value as f > f., where f. is the minimal
value of the lattice misfit for which the generation of a MDL becomes energetically

favorable, the equation AE = 0 gives [54]:
_ 3(Ec+Eel+Eint,V+Est)
fe= 8mw2(1+v)DbR?(1-t3)’ (21)
Figure 9 shows the dependence of f. on the ratio t for the following set of material
parameters: @ = e (an average value in the range from 1 to 5 [38]), k = 1, w = 7°20' =

~ (0.128 rad, and v = 0.3, for three different values of the normalized shell radius
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Fig. 9. The dependence of critical misfit parameter f. on the ratio t = R1/ R, at a = e for nanoparticles of
different size (R,/ b = 20, 50, and 180) and type, (a,b) Dh-CSNPs and (c,d) SC-CSNPs, with (a,c) and with
no (b,d) account for the surface step energy. Adopted from [43]

% = 20,50, and 180 in two cases: Fig. 9(a,b) for a Dh-CSNP (with w = 0.128 rad) and, for

comparison, Fig. 9(c,d) for a SC-CSNP (with w = 0). Figures 9(a) and 9(c) illustrate the
results obtained with taking into account the surface step energy term E, while Figs. 9(b)
and 9(d) show those obtained without this term. One can see that the curves f.(t) are
qualitatively similar for all the cases under consideration. They are also similar to the
dependences calculated earlier in [39,41] (see Figs. 3(b) and 5(b)).

However, the values of the critical parameters f; nmin, tc1 and t¢, are quite different
for these cases. For example, for Dh-CSNPs of radius % = 20,50, and 180 (Fig. 9(a)),

the minimum critical misfit f i, ~ 0.034,0.016, and 0.003, respectively, while in the case
of SC-CSNPs of the same radii (Fig. 9(c)), fcmin ~ 0.036, 0.018, and 0.006, respectively.
Thus, the relative difference in the f, i, values increase as ~ 5.9,12.5, and 100 % with
increasing value of R, /b.

It is also seen that the interval [t.q, t.2] where the MDL formation is energetically
favorable for a given f > f.nn is also larger for Dh-CSNPs than for SC-CSNPs.
For example, at R,/b = 20 and f = 0.04, it is approximately [0.45,0.83] for Dh-CSNPs
(Fig. 9(a)) and [0.52, 0.83] for SC-CSNPs (Fig. 9(c)). As noted in [43], the interval widening
in Dh-CSNPs results from the diminishing t.,, while the value of t., remains practically
the same for any fixed value of R,/b. This means that t., is strongly affected by the
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interaction of MDLs with WDs, modeling the five-fold symmetry axes in Dh-CSNPs, while
t., is mainly controlled by the misfit relaxation in the Dh-CSNPs and SC-CSNPs.

The authors [43] also noted the different positions of the points of minimum of
curves f.(t) for Dh-CSNPs and SC-CSNPs. For Dh-CSNPs, this position significantly shifts
to the region of smaller t with an increase in R, from ~0.67 for R, = 20b to ~ 0.26
for R, = 180b (Fig. 9(a)). In contrast, this position remains almost the same, in the range
of t = 0.67 — 0.70, for SC-CSNPs.

It was finally concluded [43] from Fig. 9 that Dh-CSNPs should be noticeably less
stable with respect to the formation of MDLs than SC-CSNPs in the case of f > 0. The
account for the surface step energy leads to significant correction of the f.(t) plots when
the shell radius R; is relatively small, when the surface energy contribution E,, becomes
comparable with other energy terms in Egs. (19) and (21).

A comparison of the theoretical results [43] with experimental observations of
perfect MDs in Dh-CSNPs and SC-CSNPs is shown in Fig. 10. In particular, Ding et al. [45]
observed MDs in Au-FePt; Dh-CSNP and SC-CSNP with f = 0.03, t = 0.67 and 0.75,
and R, = 16b and 15b, respectively. The corresponding blue and black points lie a little
higher the blue and black curves f.(t) plotted at @ = 1 for these values of R,, and well
fall into the intervals [t.q, tcz] for these curves at f = 0.03. Khanal et al. [56] observed
three similar MDs in an Au-CuS; Dh-CSNP with f = 0.11, t = 0.8 and R, = 74b.
The corresponding red point lies much higher the red curve f.(t) plotted at « = 1 for this
value of R,, and obviously well falls into the interval [t.q, t.,] for this curve at f = 0.11.
Thus, the results of the theoretical model [43] were in a good accordance with available
experimental observations of perfect MDs in Dh-CSNPs and SC-CSNPs.
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Fig. 10. Theoretical curves f(t) for Dh-CSNPs with shell radii R, = 16 b (blue) and 74 b (red), and
SC-CSNPs with shell radius R, = 15 b (black), plotted for « =1. Experimental points (0.67, 0.03)
and (0.75, 0.03) correspond to observation of perfect MDs in Au-FePt; Dh-CSNPs and SC-CSNPs,
respectively [45]. Experimental point (0.8, 0.11) corresponds to observation of perfect MDs in
an Au-CuS; Dh-CSNP [56]. Adopted from [43]

The case of a solid core in the form of a hemisphere resting on the equatorial plane
of a SC-CSNP (Fig. 11) was investigated in [40]. As before, for definiteness, it was assumed
that a; > a, and, therefore, f > 0. The misfit stress relaxation was supposed to occur
through the transition of the SC-CSNP from the initial coherent state with no misfit
defects (Fig. 11(a)) to a partly relaxed semi-coherent state, in which case a circular
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prismatic MDL forms at the core-shell interface (Fig. 11(b)). The initial coherent
strain/stress state in such a SC-CSNP was calculated by Kolesnikova at al. [57]. Based on
this solution, the authors [40] assumed that, for f > 0, the MDL should be of vacancy type
and could form from vacancies which nucleate on the free surface of the SC-CSNP, in the
polar region of higher positive values of the elastic dilatation, and migrate to the
dilatationally compressed core (see Fig. 4 in [57]).

(b) Az

Fig. 11. Model of a SC-CSNP with an axisymmetrical semispherical core in its (a) initially coherent and
(b) partially relaxed states. Adopted from [40]

The necessary condition for the MDL formation was given in [40] by the inequality
AE < 0, where the energy change AE is determined by Eq. (14). The first two terms on the
right hand side of this equation are the strain and core energies, respectively, of the MDL
as before, while the third term is the energy E;,; of elastic interaction of the MDL with the
misfit stress field in the SC-CSNP with a semispherical core. The latter was found as the
work spent to generate the MDL in the axial misfit stress o,, through the integral [40]:

Eine = —\1bz 3 [,° 0,,(z = 20) 2 d, (22)
where b is the Burgers vector magnitude of the MDL, z, is the MDL position with respect
to the equatorial plane of the SC-CSNP (Fig. 11(b)), and 6, is the angular coordinate of
the MDL line.

The authors [40] calculated numerically the energy change AE for a model SC-CSNP
with radius a = 200b and Poisson ratio v = 0.3. Figure 12 shows the dependence of AE
on the normalized coordinate z,/R, of the MDL plane (here Ro is the core radius) for
different values of the misfit fand the ratio Ry/a .

In the case, when f = 0.02 and R, /a is varied from 0.1 to 0.99 (Fig. 12(a)), the curves
allow to predict the energetically favorable (4E < 0) formation of the MDLs in SC-CSNPs
with hemispherical cores of normalized radius Ry/a = 0.2...0.9. The most favorable

(optimal) position z, o, Of the MDL is clearly indicated by the minimum at the energy
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Fig. 12. Dependence of the energy change AE on the normalized coordinate of the MDL z,/R,
for (@) f = 0.02 and different values of the ratio R,/a, and (b) R,/a = 0.3 and different values of the
misfit f. The small circles indicate the minima on the curves. Adopted from [40]

curves. For Ry/a = 0.2, it s zg o, = 0.36Ry; for Ry/a = 0.3, it s zg ,,r = 0.33R; for larger
values of the ratio, Ry /a = 0.4 and 0.5, it remains approximately constant, zg o,; = 0.30Ry;
and then it slightly decreases again with Ry/a. Finally, at Ry/a = 0.9, it falls down to
Zoopt = 0.20R,. For either very fine (Ry/a = 0.1) or very coarse (Ry/a = 0.99) cores, the
MDL formation is not energetically favorable (4E > 0). It was also noted in [40] that the
energy gain |AE;,|, caused by the MDL generation, increases with the ratio Ry/a in its
interval from 0.2 to 0.8 and then drastically drops at Ry/a = 0.9.

In the case, when Ry/a = 0.3 and fis varied from 0.01 to 0.15 (Fig. 12(b)), the misfit
value f =0.01 can be treated as the critical one for this value of the ratio R,/a.
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The corresponding curve has a minimum at z,/R, = 0.42 where AE = 0. At higher values
of f (here from 0.03 to 0.15), AE < 0 for any value of z,/R,. It is of interest that all these
curves have minima approximately at the same point z,/R, = 0.26. As it concluded
in [40], for Ry/a = 0.3 and any f > 0.02 (see also Fig. 12(a)), the optimal position of the
MDL is zyope = 0.26R,. It is also seen that the energy gain |4Ep;,| monotonously
increases with the misfit f > f. = 0.01.

A detailed study of the optimal position z, ,,; in dependence on the misfit f and the
ratio Ry/a for a = 200b and v = 0.3 (see Fig. 4 in [40]) showed that, for a wide range of
the model parameters, z, o, /R is close to 0.3. Then, taking z,/R, = 0.3, the authors [40]
considered the dependence of the energy change AE on the ratio Ry/a for different values
of the misfit f in the interval from 0.001 to 0.030 (Fig.13). The corresponding non-
monotonous curves AE(R,/a) may have one or two extremum points in dependence on f.
When fis relatively small (here f = 0.001), the curve has a maximum (here at Ry/a = 0.9),
and AE > 0 for any value of Ry/a, which means that no MDL can form around the core.
At a larger value of f (here at f = 0.004), the maximum shifts to the region of smaller Ry/a
(here to the point R,/a = 0.46), while a minimum appears on the curve
(here at Ry/a = 0.7) , although AE > 0 still always. Then, at a critical misfit value f.
(here f. = 0.0055), the energy change AE becomes negative in the region of its minimum
(here at Ry/a = 0.74) , which means that a MDL can form around the core in such
a SC-CSNP. The positions of the maxima strongly depend on f, shifting to smaller values
of Ry/a with increasing f, while the positions of the minima slightly shift to greater values
of Ry/a, remaining however in the range from R,/a = 0.74 to = 0.78.

£=10.001

Fig. 13. Dependence of the energy change AEon the ratio R,/a for the normalized position z,/R, = 0.3
of the MDL and different values of the misfit strain f. Adopted from [40]
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For f > f., there is an interval of R,/a values, where AE < 0, in which a MDL can
form. Outside this interval, AE > 0 and no MDL can nucleate. The boundaries of this
interval can be considered as critical values of the ratio Ry/a, (Ry/a). and (Ry/a)c,
for a given value of f. When f increases, (Ry/a).; decreases, while (Ry/a)., increases.
These conclusions of [40] are rather similar to those obtained earlier for axially symmetric
core-shell nanowires [46] and CSNPs with centered spherical cores [2,39,41,42].

When fis significantly larger then f; (here at f = 0.02), the upper boundary (Ry/a);
of the interval practically disappears, while its lower boundary (R,/a). still exists.
However, when f >> f. (here at f = 0.03), both the maximum on the curve AE(R,/a) and
the critical interval disappear, which means that a MDL can form for any value of R,/a.

Since the point of minimum on the curve AE(R,/a) remains almost the same,
at Ry/a = 0.76 = 3 /4 (Fig. 13), the authors [40] concluded that SC-CSNPs with the ratio
Ry/a = 3/4 are the less stable to the MDL formation because in this case, the appearance
of MDLs leads to the biggest energy gain |4E,;, | of the system. They also noted that their
additional calculations showed that this result did not change for other values of
the SC-CSNP radius a.

Figure 14 shows the diagrams f.(R,/a) plotted in [40] for the SC-CSNPs with
semispherical (solid red curves) and, for comparison, spherical (dashed blue curves)
cores [39] for zy/R, = 0.3 and different values of the normalized radius a/b of the SC-
CSNP. The region under (above) the curve corresponds to the case when the MDL formation
is not (is) energetically favorable. Similar diagrams were constructed and discussed in detail
for different models describing the critical conditions of MD generation in the past
[2,39,41,42,46] (see also Figs. 3(b), 5(b), 9, and 10 in the present review). In Fig. 14,
the curves f.(Ry/a) for SC-CSNPs with semispherical cores lie above the corresponding
curves for SC-CSNPs with spherical cores in the range of Ry/a < 0.9. It means that in this
range, the SC-CSNPs with semispherical cores are more stable with respect to MDL
generation than the SC-CSNPs with spherical cores. However, at R,/a = 0.9, the curves
for semispherical and spherical cores meet, which means that the SC-CSNPs with
semispherical and spherical cores become equally stable (unstable) with respect to MDL
generation. The authors [40] did not consider the range of Ry/a > 0.9 because the misfit
stress fields [57] poorly converge near the free surface of the SC-CSNP.

It is worth noting that, for SC-CSNPs with semispherical cores, the formation of
a straight MD at the core base along the diameter of a SC-CSNP was also considered [58].
In this case, the recently found solution of the boundary-value problem in the elasticity
theory for a straight edge dislocation in an elastic sphere [59] was used. It was shown that
for relatively small cores, the formation of a straight MD at the core base is less favorable
than the formation of a circular MDL around the spherical part of the core/shell interface.
However, for cores whose radii are close to the shell radius, both of these mechanisms are
approximately equivalent. The authors [58] explained it by the facts that for small cores,
the self-energy of a MDL is significantly less than for a straight dislocation intersecting
a SC-CSNP, and on the other hand, for large cores, the elastic fields of the MDL are too
strongly screened by the free surface, which significantly reduces the interaction energy of
the MDL with the misfit stress field. Therefore, as the core radius tends to the shell radius,
the formation of a MDL becomes less favorable than the formation of a straight MD.
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Fig. 14. Dependence of the critical misfit f. on the ratio R,/a for z,/R, = 0.3, v = 0.3 and different values
of the normalized radius a/b of the nanoparticle. The solid (red) curves show the solution
for a semispherical core, while the dashed (blue) curves for a spherical core. Adopted from [40]

In all the aforementioned models, the critical conditions for the onset of already
formed MDLs in CSNPs were analyzed. However, neither the physical processes of MDL
nucleation and formation nor the energy barriers, which could accompany these
processes, were considered. To overcome these drawbacks, the authors of [60] suggested
a model of nucleation of an initial defect configuration capable to develop in a final
configuration of the first closed MDL around the core. They assumed that the initial defect
configuration could be a small PDL nucleating from either the inner or outer boundary in
the SC-CSNP and propagating into its core or into its shell. The critical conditions for
nucleation of such a PDL were calculated by using Eqgs. (14) and (15) with appropriate
formulas for the energy terms [60]. In particular, the approximation of the classical linear
isotropic theory of elasticity was used with the assumptions that the core and the shell
had identical elastic moduli and that the shell thickness h was substantially smaller than
the outer radius of the SC-CSNP R: h << R. With the latter assumption, the authors [60]
passed in calculation of the strain energy term from the spherical to planar geometry of
the problem and considered a rectangular PDL. In this case, the solution for the strain
energy of a rectangular PDL located in a plane perpendicular to the plane of the free
surface of the elastic half-space [61] was used.

Thus, the authors [60] calculated the critical conditions for relaxation of misfit
stresses in SC-CSNPs through the generation of rectangular PDLs at either the internal
core-shell interface or the outer free surface with their subsequent propagation into the
core or into the shell in the cases where the PDLs have the shape of a square or are
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extended along or across the interface. As a result, they investigated the necessary
conditions for the generation of PDLs of nine types classified according to the shape of
the PDL and the position of its formation. It was shown that such PDLs can form when
the misfit f exceeds a critical value that depends on R, h, the PDL formation position, and
the shape of PDLs. For a PDL generating in the shell, this condition holds when h either
lies in a specific range of small values or (for a larger value of f) is less than a critical
value. For a PDL generating in the core, h should exceed a critical value. It was also shown
that the PDLs elongated along the core-shell interface are formed easier. When the shell
grows on the core of a fixed radius, the energetically more preferable generation of a PDL
occurs first from the free surface into the bulk of the shell, then from the interface into
the shell, and finally from the interface into the core of the SC-CSNP.

The model [60] of misfit stress relaxation through generation of rectangular PDLs
in SC-CSNPs was later extended to various heterogeneous nanostructures. In particular,
PDL generation in heteronanostructures of spherical (solid [62,63] and hollow [62-64]
SC-CSNPs), infinite cylindrical (solid [63-67] and hollow [63,64] core-shell nanowires),
flat (bi- and tri-nanolayers [63,64]), and finite-length tubular [68] geometry was analyzed.
Departing from the calculations of the misfit stress fields in the heteronanostructures,
the authors investigated changes in their energies caused by the formation of PDLs in
different regions of them, revealed the regions of the energetically more preferable
generation of the PDLs and specified the optimum shape of the PDLs. Gutkin and
Smirnov [63,64] compared the critical conditions for the onset of the most energetically
favorable PDLs in different heteronanostructures and ranged the relative stabilities of
these nanostructures against PDL formation. They concluded hollow nanostructures are
always more stable than their solid counterparts, the cylindrical nanostructures are more
stable than the symmetric flat tri-nanolayers, the spherical nanostructures are more
stable than the cylindrical ones, and the flat bi-nanolayers are the most stable
nanostructures among those under consideration.

Critical conditions for misfit dislocation generation in composite nanowires

Critical conditions for MD generation in composite nanowires of different architectures have
remained in the focus of many authors for a long time (see, for example, books [11-13]
and reviews [22-27,69]). The main segments in this field are theoretical models for:
straight MDs [46,70-74], circular [30,70,75-80] and elliptic [81] MDLs, and rectangular
PDLs [63,64] in core-shell nanowires (CSNWs) with cylindrical cores; straight MDs [82]
and rectangular PDLs [65-67] in CSNWs with prismatic cores of hexagonal, squared and
triangular cross section; straight MDs [47,83,84], circular MDLs [32] and rectangular
PDLs [63,64] at/in nanotubes embedded to infinite matrix; straight MDs [85-87] and
circular PDLs [88] in axially-inhomogeneous nanowires with transverse interfaces;
straight MDs in bilayer nanowires with planar interfaces [89-93]; circular MDLs around
axially symmetric finite-length cylindrical inclusions in nanowires [28].

Since the most of these models have been extendedly reviewed in recent years
[24-27,69], here we briefly consider only some fresh results [91-93] which have been
reported in conference talks but not published in regular journals yet.
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Figure 15 shows a model [91] of the cross-section of a bilayer nanowire with a flat
longitudinal interface in the initial coherent and partly relaxed states. The nanowire was
supposed elastically isotropic and homogeneous. The initial coherent state in this case is
different from those considered in earlier models [89,90] where the one-dimensional
lattice misfit along the x-axis was assumed and modeled through a continuous
distribution of virtual edge dislocations with infinitesimal Burgers vectors &b = &be, (here
&b is the infinitesimal Burgers vector magnitude and e, is the ort of the x-axis). In
models [91-93], the authors considered the general case of three-dimensional lattice
misfit f= 2(a, - a.)/(a, + a1) and solved the corresponding boundary-value problem in the
classical theory of elasticity.
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Fig. 15. Cross-section of a bilayer nanowire in (a) the initial coherent state and (b) the partly relaxed
state with a misfit dislocation. Here a; and a; are the lattice parameters in the nanowire layers, R is the
nanowire radius, y = yo is the interface position, b is the Burgers vector of the misfit dislocation, and ¢
is the angle between the Burgers vector and the interface plane. Adopted from [91]

The onset of the first straight edge MD at the interface (Fig. 15(b)) needs the
fulfillment of the common inequality AW = W, + W, + W, Where AWis the energy
change caused by the generation of the MD, W, is the MD strain energy, W, is its core
energy, and W, is the energy of interaction of the MD with the initial misfit stress in the
nanowire. All these energy terms are calculated per unit length of the MD. Then the
critical misfit follows from the equation AW = 0 as [91]:

—_ 39® _ 42 2 . 2p_ 34V
ﬁ_g(lw)scose(lnasﬂnu t2) + t2 cos? 0 4(1—1/))' (23)

wheres = R/b,t = y,/R, ais the dislocation core energy parameter [38], v is the Poisson
ratio, and g(t) is the dimensionless function equal to 1 for ¢t = 0 and given by:

2t3
g(t) a 3(1—-t4)(arcsin t—tV1-t2)’ for 0 < Itl <1l (24)

Figure 16 shows the dependence of the critical misfit f. on the normalized position
t of the interface for different values of radius R at v = 0.3, a = e (here e is the base of
natural logarithm), and 68 = 30°. As is seen, the critical misfit f. depends on both the
nanowire radius R and interface position yo. It increases with a decrease in R and behaves
non-monotonously with an increase in yo: f. slowly decreases with y, at relatively small
values of yo, reaches its minimum value f .;, at some intermediate value of yo varying
from roughly 0.48R in the range of relatively large values of R (here for R > 50b) to
roughly (0.50-0.54)R at smaller values of R (here at R = 25b and 10b), and then increases
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Fig. 16. Dependence of the critical misfit f. on the normalized position t of the interface for different
values of the normalized radius s = R/b at v = 0.3, @ = e, and 8 = 30°. The open dots indicate the
minima of the curves. Adopted from [91]

with yo, especially fast when y, > 0.8R. Thus, it was shown in [91] that bilayer nanowires
with asymmetric position y, = R/2 of the interface are the most unstable with respect to
MD generation.

The misfit stress relaxation in the same model system (Fig. 15(a)) through the
formation of equilibrium discrete ensembles of edge MDs was considered in [92]. The
number and arrangement of MDs were chosen to minimize the energy W of the system
per unit area of the interface. As a result, the dependence of this energy W on the misfit
fwas studied for R = h and 2h, where h = R — y, is the maximum thickness of the ‘upper’
layer, and compared with that for a thin flat epilayer of thickness h on a thick substrate
(Fig. 17). It is seen that, for a given value of h, the misfit relaxation with increasing f in
the nanowire begins expectedly later than, for example, in a thin flat epilayer on a thick
substrate. On the other hand, it was also shown [92] that, at a sufficiently high level of f
(here for f> 20 %) the density of the MD ensemble is practically independent on the
configuration of the system.

A h=20b
Yy Il ke ke
b R=2h w
W2
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Fig. 17. Dependence of the energy W on the misfit ffor h = 20b. Here D = G /[2n(1 — V)], G is the
shear modulus, v is the Poisson ratio, and b is the Burgers vector magnitude of the misfit dislocations.
The dashed curves show similar dependences for the corresponding systems in the coherent state
(with no MDs). Adopted from [92]
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Fig. 18. A straight edge MD piercing a symmetrical bilayer nanowire normally to its axis. Based on
results given in [93]
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Fig. 19. Dependence of the critical misfit £ for the formation of straight edge MDs in different Janus
nanostructures — a symmetrical bilayer cylinder of radius R, a sphere of radius R and a plate of thickness
2R - on their normalized characteristic size R/b at v = 0.3 and a = e. Based on results given in [93]
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Fig. 20. Dependence of the critical misfit f, for the formation of straight edge MDs in different Janus
nanostructures — a symmetrical bilayer cylinder of radius R, a sphere of radius R and a plate of
thickness 2R - on their normalized characteristic size R/b at @« = e and (@) v = 0 and (b) v = 0.49.
Based on results given in [93]

MD lines in models [89-92] were parallel to the nanowire axes. Obviously, it would
be also reasonable to consider the nonparallel case. However, modeling of such
configurations is hindered by the lack of analytical solutions for the boundary-value elastic
problems on cylinders with straight dislocations piercing the free surface of the cylinders.
Thus, calculating the dislocation strain energy W, becomes a matter of numerical
approximations. On the other hand, the interaction energy W;,; can still be obtained



Micromechanics of misfit stress relaxation in heterogeneous crystalline nanostructures: a review 25

analytically with the aforementioned solution for the misfit stress-field of a bilayer
nanowire [92]. In such a manner, the misfit stress relaxation in a symmetrical bilayer
cylinder via the formation of an edge MD perpendicular to the cylinder axis (Fig. 18) was
considered in [93]. The strain energy W, was calculated with the finite element method
and verified by comparison with several well-known analytical solutions for other systems.
The results show that the values for the critical misfit f. for both the parallel and
perpendicular MDs in a symmetrical bilayer cylinder are rather close (Fig. 19). However,
it is of interest that the exact relation between those two cases depends on the Poisson
ratio v (Fig. 20): for v = 0, the perpendicular MD is more preferable than the parallel one,
while forv = 0.49 it is vice versa, and for intermediate values (here for v = 0.3, see Fig. 19),
the critical misfits are practically equal. In any case, both the critical misfits for a bilayer
cylinder of radius R lie between the critical misfit values for a symmetrical bilayer plate
of thickness 2R and a Janus sphere of radius R. Thus, comparing different architectures of
Janus nanostructures, one can conclude that the Janus plate is less stable to the MD
generation than the Janus cylinder, while the latter is less stable in this respect than the
Janus sphere. This result well corresponds to the earlier comparison of the stability of
different misfitting nanostructures to the formation of small rectangular PDLs [63,64].

Theoretical models for misfit dislocations in free-standing composite nanolayers

The theoretical models describing the elastic fields and strain energy of MDs, and critical
conditions for their generation in free-standing composite nanolayers were suggested
and studied by a number of authors. In particular, they considered: straight edge MDs in
misfitting bi- [44,94-102], tri- [102,103], and multilayers [94] with two free surfaces and
either different [44,94-96,99-102] or equal [96,98,103] elastic constants, isotropic
[44,94-98,103] and anisotropic [99-102]; a periodic set of straight screw interfacial MDs
normally piercing the free surfaces of a plate-like heterogeneous bicrystal with different
isotropic elastic moduli [104,105]; dipoles of straight edge MDs in the interfaces of a
lamellar inclusion piercing a nanolayer normally to its free surfaces [106,107]; a circular
MDL in the interface of a circular cylindrical inclusion piercing a nanolayer normally to
its free surfaces [108]; straight edge MDs in a nanolayer with an embedded nanowire of
rectangular cross section with the faces parallel and normal to the nanolayer free
surfaces [109]. It is worth noting that model nanostructures in works [106-109] were
assumed elastically isotropic and homogeneous.

Some of the authors concentrated their attention on the calculation of elastic fields of
some presumed periodic configurations of MDs at the interfaces [94,95,97,99,100,104,105],
while the others also analyzed the energetics of partly relaxed nanolayers with MDs
[44,96,98,101-103,106-109], the critical conditions for the onset of MD generation
process [44,96,103,106-109], and the energy barriers for its realization [103,109].
The discussion of the critical conditions was based on the calculation of the energy changes
accompanied the MD appearance in the misfitting nanolayers as was also the case with
composite nanoparticles and nanowires (see the previous sections). The differences were
in the self-strained energies of MDs and the energies of their interaction with the initial
misfit stresses that were found according to the geometry of the nanolayers under study.
Moreover, the earlier models [44,94-100] were already reviewed in book [11]. To avoid
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repeating, here we consider in more details only the most recent models [103,109] dealing
with analyzing possible mechanism of MD generation with corresponding critical
conditions and energy barriers.

Mikaelyan et al. [109] suggested a model of misfit stress relaxation in and around
a nanowire of rectangular cross section embedded in a nanolayer in such a way that
opposite faces of the nanowire are parallel or normal to the nanolayer surfaces (Fig. 21).
Within the model, an edge of the nanowire, which is closer to the nanolayer surface, emits
a dipole of edge dislocations, either perfect or partial, which glide along the nanowire
face normal to the free surfaces of the nanolayer. One of these dislocations glides from
the nanowire edge to the free surface, while the other one glides to the middle of the
nanowire face. Based on the earlier solutions of the boundary-value problems in the
theory of elasticity for a rectangular dilatational inclusion in a thin layer [110] and for an
edge dislocation in a thin two-layer plate [111], the authors calculated the total energy
change AW caused by the dislocation emission and analyzed it with the help of energy
maps built in coordinates of emitted dislocations x; and x..
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Fig. 21. Misfit stress relaxation near a nanowire having a rectangular cross section with sizes 21 X 2a,
embedded in a nanolayer of thickness 2d, through the emission of a dipole of edge dislocations with
Burgers vectors +b from one of two nanowire edges which are closer to the free surface of the
nanolayer. Adopted from [109]

Figure 22 shows some examples of these energy maps AW (x4,x,) plotted for
a model nanostructure of a Ge nanowire embedded in a Si nanolayer with the following
set of the material parameters: the misfit value f = 0.042, the shear modulus G = 60 GPa,
the Poisson ratio v = 0.26 and the stacking fault energy ysz = 0.069 Jm2 (for the case of
emission of partial dislocations). The Burgers vector magnitudes for partial and perfect
dislocations were b = 0.23 and 0.46 nm, respectively. For the sake of definiteness, the
authors [109] fixed the position of the nanowire center in the nanolayer as x, = 25 nm.
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Fig. 22. The maps of the energy change AW (x;, x,) in the coordinates of emitted dislocations for the
model nanostructure of a Ge nanowire embedded in a Si nanolayer for (a, ¢) partial and (b, d) perfect
dislocations at x, = 25 nm, 2a = 20 nm, 2l = 50 nm, and 2d = 100 nm (a, b) and 200 nm (c, d).
The energy values are given in eV/nm. Adopted from [109]

They also assumed that the crystalline lattices of the nanowire and nanolayer materials
were oriented in such a manner that the glide plane of the dislocations was of {111}-type,
that is the plane of easy slip for partial (Shockley) dislocations.

With these assumptions, the authors [109] chose the sizes of the nanowire cross section
as 2l =50 nm and 2a = 20 nm and plotted the energy maps AW (x;,x,) for partial
(Fig. 22(a,c)) and perfect (Fig. 22(b,d)) dislocations for two typical values of the nanolayer
thickness 2d = 100 nm (Fig. 22(a,b)) and 200 nm (Fig. 22(c,d)). The starting points of
dislocation emission were assumed to be x;0=xy+a—b=(35—b)nm and
X50 = X9 +a+ b = (35 + b) nm, so after emission the coordinate x; decreased, while the
coordinate x, increased. In a map, these starting points give a point (x; ¢, X29) = (35 —b,35 + b)
which lies near the top left corner of the map. As is seen, this point is situated in the region



28 M.Yu. Gutkin, A.L. Kolesnikova, S.A. Krasnitckii, K.N. Mikaelyan, D.A. Petrov, A.E. Romanov, A.M. Smirnov

of positive values of AW, and the value of AW (x4, x,,) mMay be considered as an energy
barrier Wen, for dislocation emission. The calculations showed [109] that for partial
dislocations, Wen is about 2.8 eV/nm for 2d = 100 nm and 3.0 eV/nm for 2d = 200 nm;
for perfect dislocations, Wen is about 13.1 eV/nm for 2d = 100 nm and 13.4 eV/nm for
2d = 200 nm. Thus, the authors [109] concluded that the energy barrier strongly depends
on the type of emitted dislocations but weakly depends on the nanolayer thickness.
On the other hand, they also showed that W., weakly depends on the nanowire size.

Figure 23 shows the dependence of W., on d for two different values of 2(, 21l = 10
and 50 nm, at 2a = 20 nm. As is seen from Fig. 23, W.n increases with a decrease in the
nanowire size. This is so because the misfit shear stress at the points of dislocation emission
increases with the nanowire size [112]. The authors [109] concluded that, in general, the
nucleation of partial dislocations is much more probable than that of perfect dislocations
in this model system of Ge nanowire in Si nanolayer. In particular, at W,,,, = 3 eV/nm,
the partial dislocations can be emitted even at room temperature in this system. In
contrast, the emission of perfect dislocations with W,,, = 13 eV/nm is possible only at
much higher temperatures.
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Fig. 23. Dependence of the energy barrier W., on the nanolayer half-thickness d for partial and perfect
dislocations at the following values of the system parameters: x, = 25 nm, 2a = 20 nm, and
2l =10 and 50 nm. Adopted from [109]

It is evident from the energy maps in Fig. 22 that if the dislocation dipole nucleate,
the dislocations start to feel at once driving thermodynamic forces which stimulate their
glide to the opposite directions. In a map, their motion is reflected by the trajectory which
follows the maximum gradient of the function AW (x4, x,) and tends to the minimum of
this function. In the case of partial dislocations, this minimum can be localized either on
the right margin of the map (Fig. 22(a)) or in its central region (Fig. 22(c)). The first
situation is characteristic for a relatively thin nanolayer (here with the thickness
2d = 100 nm) when one dislocation (with coordinate x;; the authors [109] called it
x,-dislocation) reaches its stable equilibrium position x;,, ~ 26 nm at the middle of the
nanowire face, while the other dislocation (with coordinate x,; the authors [109] called
it x,-dislocation) achieves its stable equilibrium position x,.,, =50 nm on the free
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surface of the nanolayer. The second situation is characteristic for a relatively thick
nanolayer (2d = 200 nm) when the x;-dislocation also reaches its stable equilibrium
position x;., & 26 nm at the middle of the nanowire face, while the x,-dislocation stops
inside the nanolayer, at the stable equilibrium position x,., = 67 nm.

In the case of perfect dislocations, the minimum of function AW (x4, x,) was always
localized on the right margin of the map (Figs. 22(b,d)). As follows from its position,
the x;-dislocation reaches its stable equilibrium position x;., = 25 nm at the middle
of the nanowire face, while the x,-dislocation glides to its stable equilibrium positions
X2eq = 50 nm (for 2d = 100 nm) and 100 nm (for 2d = 200 nm) on the free surface of the
nanolayer.

Thus, the calculations of [109] show that perfect dislocations (if they can overcome
the energy barrier for their nucleation) must occupy two stable equilibrium positions, one
in the middle of the nanowire face and the other one on the free surface of the nanolayer.
This situation does not depend on the nanowire and nanolayer sizes. In the case of partial
dislocations, whose nucleation is much more probable than that of perfect ones, one
dislocation must always occupy its stable equilibrium position at the middle of the
nanowire face, while the equilibrium position of the second dislocation depends on the
nanowire and nanolayer sizes.

Colin [103] considered a model of misfit strain relaxation in a three-layer structure
through the climb of one and two straight edge dislocations from the ‘upper’ free surface
(Fig. 24). He calculated the equilibrium positions of the dislocations, the energy barriers
for their climb to the interface, and the critical misfit values for their generation under
the assumptions that the second dislocation climbs in the same path as the first one and
that the effects of the ‘lower’ free surface on the dislocation stresses can be neglected.
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Fig. 24. Two layers of material B and thickness hg cover a matrix of material A and thickness ha. An edge
dislocation with Burgers vector b = (b, 0) lies at a position (0,—p.) in the upper layer. Adapted from [103]

Conclusions

In general, it is shown that both classical and novel methods of the theory of spatial
elasticity in combination with the micromechanics of defects form an effective approach
which allows adequate description of the relaxation of misfit stresses in various
inhomogeneous crystalline nanostructures - composite nanoparticles, nanowires and
nanolayers. In recent decades, many new theoretical models have been elaborated within
this approach. Significant progress has been achieved in describing the dislocation
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mechanisms, the energy barriers, and the critical conditions of misfit stress relaxation in
newly considered misfitting nanostructures such as solid and hollow core-shell
nanoparticles and nanowires, core-shell nanowires with faceted cores, Janus
nanoparticles and nanowires, spherical nanoparticles with semispherical cores, axially-
inhomogeneous nanowires with planar transverse interfaces, embedded nanotubes, and
free-standing nanolayers with embedded nanowires. Based on these achievements, one
can conclude that the relative stability of different misfitting nanostructures to stress
relaxation through generation of MDs increases with a decrease in the dimension of the
nanostructures having the same characteristic sizes: the planar nanolayers (quasi
2D-nanostructures) are less stable than the cylindrical ones (quasi 1D-nanostructures),
and the latter are less stable than the spherical ones (quasi OD-nanostructures).
Generation of partial MDs needs lower energy barriers to overcome than that of perfect
MDs, although perfect MDs provide more effective relaxation of misfit stresses than
partial MDs.

Among the problems of special interest in the nearest future, the following research
areas can be noted:
1. further development of theoretical models of misfit stress relaxation in already
analyzed nanostructures with special attention to the calculation of energy barriers for
MD formation and equilibrium densities of MDs belonging to different families (for
example, straight MDs and MDLs in core-shell nanowires);
2. comparative studying (when suitable and possible) the models for generation of partial
and perfect MDs in various misfitting nanostructures;
3. invention of effective approaches for analytical modeling the misfit stress relaxation
in faceted core-shell nanowires and nanoparticles;
4. formulation and solution of new boundary-value problems in the theory of elasticity
for straight dislocations and disclinations shifted from the axial position in bulk, hollow
and inhomogeneous spheres;
5. solution of new boundary-value problems in the theory of elasticity to determine misfit
stress fields in inhomogeneous crystalline nanostructures with diffuse interfaces;
6. development of theoretical models for misfit stress relaxation in inhomogeneous
crystalline nanostructures with diffuse interfaces.

It is expected that any progress in dealing with these problems will allow to obtain
new results that will be useful for better understanding the behavior of defects, stress
relaxation and related phenomena in real device nanostructures.
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