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ABSTRACT  
Theoretical models of misfit stress relaxation in heterogeneous crystalline nanostructures are reviewed in 
brief. It is shown that the main channel of relaxation is the formation of misfit dislocations. Some 
mathematical tools for continuum modeling of misfit stress relaxation through generation of discrete 
dislocations in spherical and cylindrical nanostructures are considered with special attention to the strain 
energies of the dislocations and the energies of elastic interaction between them. The critical conditions 
and energy barriers for the formation of prismatic dislocation loops and straight edge misfit dislocations in 
core-shell nanoparticles and nanowires with various types of cores, in Janus nanoparticles and nanowires, 
in axially inhomogeneous nanowires with transverse interfaces, and in free-standing composite nanolayers 
are discussed.  
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Introduction 
Heterogeneous crystalline nanostructures serve as the basis of modern devices in nano- 
and microelectronics, optoelectronics, photonics, etc. It is well known that their physical 
properties and performance characteristics strongly depend on elastic misfit strains 
caused by differences in crystal lattice parameters. Under certain conditions, the misfit 
strains and stresses relax through the formation of various defects [1–5], which can lead 
to a significant deterioration in the properties of nanostructures. The most common way 
of such relaxation is the formation of misfit dislocations (MDs) at the interfaces. 
Theoretical and experimental studies of relaxation processes with the formation of MDs 
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have been carried out since the mid-twentieth century (see, for example, some earlier 
papers [6,7] and more recent books [8–13] and reviews [14–27]). However, the discussion 
of the sources, mechanisms, and critical conditions for the appearance of MDs in real 
inhomogeneous crystalline nanostructures is still of great interest [25–27].  

The present paper offers a brief overview of very recent theoretical models of misfit 
stress relaxation in inhomogeneous crystalline nanostructures – composite nanoparticles, 
nanowires and nanolayers. 

 
Mathematical tools for continuum modeling of misfit stress relaxation 
through generation of discrete dislocations 
The invention and comparison of different relaxation micromechanisms lead to the 
conclusion that, in the vast majority of cases, the main channel of relaxation is the 
formation of various dislocation configurations [1,2,28]. To determine and analyze the 
critical conditions for their formation, some novel mathematical tools were developed.  
In particular, new analytical solutions of the boundary problems in the theory of elasticity 
for circular prismatic dislocation loops in a hollow elastic sphere [29] and in an elastic 
cylinder [30] were obtained. Solutions were found for the strain energy of such 
loops [29,30] and for the energies of pair elastic interaction between them [30,31].  
The stress fields and strain energy of a circular prismatic dislocation loop surrounding a 
cylindrical cavity in an infinite elastic medium were calculated [32] as well. All these 
solutions were found by using the classical methods of the elasticity theory, which were 
described in detail by Lurie [33]. Since the analytical formulas for the elastic fields are 
rather cumbersome, here we show the expressions for strain and interaction energies 
only that are of primary importance for theoretical modeling of the misfit-stress 
relaxation micromechanisms. 

In the case of a circular prismatic dislocation loop placed axisymmetrically in a 
hollow elastic sphere (Fig. 1(a)), the elastic strain energy of the system is given by the 
superpositions [29]: 

𝐸el = 𝐸 
∞ − 𝜋𝑏 ∫ 𝜎̃𝑧𝑧|𝑧=𝑧0

𝑟𝑑𝑟
𝑐

0
, |𝑧0| ≥ 𝑎𝑝,                                                                                      (1) 

𝐸el = 𝐸 
∞ −

𝐺𝑏2𝑐𝑝
2

(1−𝜈)𝑐
D (

𝑐𝑝

𝑐
) − 𝜋𝑏 ∫ 𝜎̃𝑧𝑧|𝑧=𝑧0

𝑟𝑑𝑟
𝑐

0
, |𝑧0| < 𝑎𝑝,  (2) 

where 𝐸 
∞  is the elastic strain energy of the loop in an infinite elastic medium,  

b is the Burgers vector magnitude of the loop, c is the loop radius, z0 is its position in the 
sphere, ap is the radius of the cavity in the center of the sphere, G and ν are the shear 
modulus and the Poisson ratio, respectively, of the sphere material, 𝑐𝑝 = (𝑎𝑝

2 − 𝑧0
2)1/2,  

D(𝑘) = ∫ sin2 𝑡 (1 − 𝑘2 sin2 𝑡)−1/2𝑑𝑡
𝜋/2

0
 is the elliptic integral [34], and 𝜎̃𝑧𝑧 is the axial 

component of the additional stress tensor that provides the fulfilment of traction-free 
boundary conditions on the inner and outer surfaces of the hollow sphere.  

The elastic strain energy 𝐸 
∞  reads [35,36]: 

𝐸 
∞ =

𝜋𝐺𝑏2𝑐

2(1−𝜈)
𝐽(1,1; 0)|𝑟=𝑐−𝑟𝑐𝑜𝑟𝑒,𝑧=𝑧0

,  (3) 

where 𝐽(1,1; 0)|𝑟=𝑐−𝑟𝑐𝑜𝑟𝑒,𝑧=𝑧0
= ∫ 𝐽1(𝜅)𝐽1(𝜅(1 − 𝑟𝑐𝑜𝑟𝑒/𝑐))𝑑𝜅

∞

0
 is the Lipschitz-Hankel 

integral [37], 𝐽1(𝑡) is the Bessel function of the first order, and rcore is the dislocation core 
radius. When 𝑐 >> 𝑟𝑐𝑜𝑟𝑒, Eq. (3) is well approximated by the following equation: 
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Fig. 1. Circular prismatic dislocation 
loops (PDLs) in (a,c) hollow elastic 
spheres, (b,d) elastic cylinders, and  

(e) around cylindrical hole in infinite 
elastic medium 
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𝐸 
∞ =

𝐺𝑏2𝑐

2(1 − 𝜈)
ln (

8𝑐

𝑟𝑐𝑜𝑟𝑒
− 2).   (4) 

The additional axial stress 𝜎̃𝑧𝑧 [29] is:  
𝜎̃𝑧𝑧 = 𝜎̃𝑅𝑅 cos2 𝜃 + 𝜎̃𝜃𝜃 sin2 𝜃 − 𝜎̃𝑅𝜃 sin 2 𝜃,  (5) 

with 𝜎̃𝑅𝑅 = 2𝐺 ∑ [
 
 𝐴𝑘

(1)∞
𝑘=0 (𝑘 + 1)(𝑘2 − 𝑘 − 2 − 2𝜈)𝑅𝑘 + 𝐵𝑘

(1)
𝑘(𝑘 − 1)𝑅𝑘−2 −

𝐶𝑘
(2)

𝑘

𝑅𝑘+1
(𝑘2 + 3𝑘 − 2𝜈)+ 

+
𝐷𝑘

(2)
(𝑘+1)(𝑘+2)

𝑅𝑘+3 ] 𝑃𝑘(cos 𝜃), 𝜎̃𝑅𝜃 = 2𝐺 ∑ [
 
 𝐴𝑘

(1)∞
𝑘=0 (𝑘2 + 2𝑘 − 1 + 2𝜈)𝑅𝑘 + 𝐵𝑘

(1)(𝑘 − 1)𝑅𝑘−2 +

𝐶𝑘
(2)

𝑅𝑘+1 (𝑘2 − 2 + 2𝜈) −
𝐷𝑘

(2)
(𝑘+2)

𝑅𝑘+3 ]
𝑑𝑃𝑘(cos 𝜃)

𝑑𝜃
, 𝜎̃𝜃𝜃 = 2𝐺 ∑ {[−𝐴𝑘

(1) (𝑘 + 1)∞
𝑘=0 (𝑘2 + 4𝑘 + 2 + 2𝜈)𝑅𝑘 −

𝐵𝑘
(1)

𝑘2𝑅𝑘−2 +
𝐶𝑘

(2)
𝑘

𝑅𝑘+1
(𝑘2 − 2𝑘 − 1 + 2𝜈) −

𝐷𝑘
(2)

(𝑘+1)2

𝑅𝑘+3 ] 𝑃𝑘(cos 𝜃) − [𝐴𝑘
(1)

(𝑘 + 5 − 4𝜈)𝑅𝑘 +

𝐵𝑘
(1)

𝑅𝑘−2 +
𝐶𝑘

(2)

𝑅𝑘+1 (−𝑘 + 4 − 4𝜈) +
𝐷𝑘

(2)

𝑅𝑘+3]
𝑑𝑃𝑘(cos 𝜃)

𝑑𝜃
cot 𝜃}. 

Here R is the radial coordinate (see Fig. 1(a)), 𝜃 is the polar angle, and Pk (t) are the 
Legendre polynomials. The coefficients 𝐴𝑘

(1)
, 𝐵𝑘

(1)
, 𝐶𝑘

(2)
, and 𝐷𝑘

(2) are found from the free-
traction boundary conditions of the problem [29].  

The graphical representation of the elastic strain energy Eel is given in [29]. When a 
circular prismatic dislocation loop is placed axisymmetrically in an elastic cylinder 
(Fig. 1(b)), the elastic strain energy of the system is given by the superposition [30]: 

𝐸el = 𝐸 
∞ −

𝐺𝑏2𝑎𝑡2

1−𝜈
∫

𝑠2𝑡2𝐼0
2(𝑡𝑠)+𝑤𝐼1

2(𝑡𝑠)−2𝑠𝑡𝐼1(𝑡𝑠)𝐼0(𝑡𝑠)[𝑤𝐼1(𝑠)𝐾1(𝑠)+𝑠2𝐼0(𝑠)𝐾0(𝑠)]

𝑠2𝐼0
2(𝑠)−𝑤𝐼1

2(𝑠)

∞
0

𝑑𝑠,    (6) 

where 𝑡 = 𝑐/𝑎, 𝑤 = 𝑠2 + 2(1 − 𝜈), I0,1(κ) and K0,1(κ) are the modified Bessel functions of 
the first kind and the Macdonald functions, respectively.   

The graphical representations of the elastic strain energy Eel for the circular 
prismatic dislocation loops in a hollow sphere and in a cylinder are given in [29,30].  

The energy of pair elastic interaction between two coaxial circular prismatic dislocation 
loops (denoted as PDL-1 and PDL-2) in a hollow sphere (Fig. 1(c)) can be written as a sum [31]: 

𝐸int = 𝐸 
∞

int + 𝐸 
∗

int,  (7) 
where the first term, 𝐸 

∞
int, is the interaction energy of the loops in an infinite elastic 

medium, while the second term, 𝐸 
∗

int, is caused by the effect of the inner and outer free 
surfaces of the sphere. 

As shown in [31], the term 𝐸 
∞

int reads: 

𝐸int = 
∞ 𝜋𝐺𝑏1𝑏2

1−𝜈
[𝑟𝐽(1,1; 0) +

|𝑧−𝑧2|

𝑐2
𝑟𝐽(1,1; 1)]

𝑟 = 𝑐1

𝑟 = 𝜉 |
 

𝑧 = 𝑧1
 
,                                                               (8) 

where 𝑏1 and 𝑏2 are the Burgers vector magnitudes of the loops, 𝑐1 and 𝑐2 are their radii, 
𝑧1 and 𝑧2 are their coordinates with respect to the sphere center (Fig. 1(c)); ξ = 0 for z1 ≥ ap, 

and 𝜉 = √𝑎𝑝
2 − 𝑧1

2 for z1 < ap, and 𝐽(𝑚, 𝑛; 𝑝) = ∫ 𝐽𝑚(𝜅)𝐽𝑛(𝜅𝑟/𝑐2) exp[ − 𝜅|𝑧 − 𝑧2|/𝑐2]𝜅𝑝𝑑𝜅
∞

0
. 

The term 𝐸 
∗

intis given by [31]: 

𝐸int = 
∗ 𝜋𝐺𝑏1𝑏2

1−𝜈
∑ [𝐴𝑛

(2) 2(𝑛+1)(1+𝜈−2𝑛𝜈−2𝑛2)

2𝑛−1
𝑄𝑛,1 ++∞

𝑛=0

+𝐴𝑛+2
(2) (𝑛+2)(𝑛+3)(2𝑛2+9𝑛+7)

2𝑛+3 𝑛,2𝑖𝑛𝑡

+ 𝐵𝑛+2
(2)

(𝑛 + 1)(𝑛 + 2)𝑄𝑛,1 −

−𝐶𝑛
(2) 2𝑛[2𝑛2+2𝑛(2−𝜈)+1−3𝜈]

2𝑛+3
𝑇𝑛,1 − −𝐶𝑛−2

(2) 𝑛(𝑛−2)(2𝑛2−7𝑛+5)

2𝑛−1
𝑇𝑛,3 + 𝐷𝑛−2

(2)
𝑛(𝑛 − 1)𝑇𝑛,3],  

 (9) 
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where 𝐴𝑛
(2), 𝐵𝑛

(2), 𝐶𝑛
(2), and 𝐷𝑛

(2)are the coefficients determined in [29] from the boundary 
conditions on the free inner and outer spherical surfaces, Qn,l and Tn,l are the following 
polynomials: 

𝑄𝑛,𝑙 = ∑
(−1)𝑠

2𝑛(𝑠+𝑙)
( 𝑠

𝑛)(   𝑛
2𝑛−2𝑠)𝑧1

𝑛−2𝑠(𝑅1
2(𝑠+𝑙)

− 𝜁2(𝑠+𝑙))
[𝑛/2]
𝑠=0 ,   (10a) 

𝑇𝑛,𝑙 = ∑
(−1)𝑠

2𝑛(−2𝑘+2𝑠+𝑙)
( 𝑠

𝑛)(   𝑛
2𝑛−2𝑠)𝑧1

𝑛−2𝑠(𝑅1
−2𝑘+2𝑠+𝑙 − 𝜁−2𝑘+2𝑠+𝑙)

[𝑛/2]
𝑠=0 .  (10b) 

Here [n / 2] denotes the greatest integer ≤ 𝑛/2, ( )ns  are the binomial coefficients, and 

ζ = z1  for  z1 ≥ ap, and ζ = ap  for  z1 < ap. 
In a cylinder of radius a (Fig. 1(d)), the energy of pair elastic interaction between 

two identical axisymmetric circular prismatic dislocation loops of radius c with the 
Burgers vector magnitude b and spacing h is given by the sum (7), the terms of which can 
be written as follows [30]:  

𝐸int = 
∞ 𝜋𝐺𝑏2с

1−𝜈
(𝐽(1,1; 0) ⥂|𝑧=ℎ +

ℎ

𝑐
𝐽(1,1; 1)|𝑧=ℎ)

 
,                                                             (11a) 

𝐸int = 
∗ 2𝐺𝑏2с𝑡

1−𝜈
∫

𝑠2𝑡2𝐼0
2(𝑡𝑠)+𝑤𝐼1

2(𝑡𝑠)−2𝑠𝑡𝐼1(𝑡𝑠)𝐼0(𝑡𝑠)[𝑤𝐼1(𝑠)𝐾1(𝑠)+𝑠2𝐼0(𝑠)𝐾0(𝑠)]

𝑠2𝐼0
2(𝑠)−𝑤𝐼1

2(𝑠)

∞
0

cos
ℎ𝑠

𝑎
𝑑𝑠

 
.                       (11b) 

The interaction energies for the circular prismatic dislocation loops in a hollow sphere 
and in a cylinder are illustrated in detail by maps [31] and plots [30], respectively.  

The total (including the energy of the dislocation core) energy of a circular 
prismatic dislocation loop surrounding a cylindrical cavity in an infinite elastic medium 
(Fig. 1(e)) [32] is:  

𝐸𝑡 =
𝐺𝑏2с

2(1−𝜈)
{ln

1.08𝛾𝑐

𝑏
−

2

𝑡
𝐃 (

1

𝑡
) − 2∫ {(−2𝐴1𝜈 + 𝐵1𝛽)[𝐾1(𝛽) − 𝑡𝐾1

∞
0

(𝛽𝑡)] +

+𝐴1𝛽[𝐾2(𝛽) − 𝑡2𝐾2(𝛽𝑡)]}𝑑𝛽},  
 (12) 

where the first term is the total energy of the loop in an infinite elastic medium [36,38], 
 is the core energy parameter ranging from 1 for metals to 4 for semiconductors [38] and 
the coefficients A1 and B1 are given by the following equations [32]: 

𝐴1 = ±
𝐾1(𝛽𝑡)[𝑤𝐼1(𝛽)𝐾1(𝛽)+𝛽2𝐼0(𝛽)𝐾0(𝛽)]−𝛽𝑡𝐾0(𝛽𝑡)

𝑤𝐾1
2(𝛽)−𝛽2𝐾0

2(𝛽)
,  (13a) 

𝐵1 = ± {
𝑡𝐾0(𝛽𝑡)[𝑤𝐼1(𝛽)𝐾1(𝛽)+𝛽2𝐼0(𝛽)𝐾0(𝛽)+2−2𝜈]

𝑤𝐾1
2(𝛽)−𝛽2𝐾0

2(𝛽)
+  

+
𝐾1(𝛽𝑡){2(𝜈−1)[𝛽2𝐼0(𝛽)𝐾0(𝛽)+𝑤𝐼1(𝛽)𝐾1(𝛽)]−𝑤}

𝛽[𝑤𝐾1
2(𝛽)−𝛽2𝐾0

2(𝛽)]
}. 

(13b) 

Here 𝑤 = 𝛽2 + 2(1 − 𝜈).  
The energy plots illustrating Eq. (12) are represented in Ref. [32] in detail. 

 
Critical conditions for the onset of misfit dislocations in core-shell nanoparticles 
Using the solutions for the self strain energies of circular prismatic dislocation loops 
placed in elastic bodies of different geometry (see the previous section), the critical 
conditions necessary for the formation of circular prismatic misfit dislocation loops 
(MDLs) at the interfaces in core-shell nanoparticles with different types of cores were 
determined. In particular, the critical conditions for the formation of MDLs in solid [39,40] 
and hollow [41] single-crystalline and in solid decahedral [42] spherical nanoparticles 
were considered. To model the latter, a new solution for the elastic fields of a wedge 
disclination in an elastic sphere [43] was used. The cases of cores in the form of a 

https://en.wikipedia.org/wiki/Integer
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solid [39,42] and hollow [41] sphere, as well as in the form of a hemisphere resting on 
the equatorial plane of a nanoparticle [40] were investigated. 

Within the continuum approach, the calculation scheme was based on the 
assumption that the difference in the total energy of the system under study 𝛥𝐸 due to 
the onset of the first MDL can be approximated by the following general formula [44]: 

𝛥𝐸 = 𝐸el + 𝐸c + 𝐸int,                                                                                                       (14) 
where 𝐸el is the elastic strain energy of the MDL in the system, 𝐸c is the energy of the 
MDL core, and 𝐸int is the energy of interaction of the MDL with the initial misfit stress in 
the system before the MDL appearance there.  

The formation of the first MDL is energetically favorable if 𝛥𝐸 < 0. Therefore,  
the equation 𝛥𝐸 = 0 gives the critical conditions for its onset in the system. Since the 
energy difference 𝛥𝐸 (more precisely, its third term 𝐸int) is always in linear proportion 
with the misfit parameter f (here we assume for definiteness that 𝑓 > 0), this equation is 
always simply resolved with respect to a critical misfit fc given by: 

𝑓𝑐 = −
𝐸el+𝐸c

𝐸int
∗ ,                                                                (15) 

where 𝐸𝑖𝑛𝑡
∗ =  𝐸𝑖𝑛𝑡

 /𝑓. Thus, the critical (necessary) condition for the formation of the first 
MDL in the system can be written as 𝑓 > 𝑓c. As a result, the analyzes of the system 
stability with respect to its transition from the coherent state (with no MDL) to the partly 
relaxed (semicoherent) state with a MDL comes down to studying the dependences of the 
critical misfit fc on other parameters (geometric, material, etc.) of the system. 

Consider, for example, the case of a spherically symmetric core-shell nanoparticle 
studied in [39]. It was assumed that the nanoparticle consisted of an elastically isotropic 
core and an elastically isotropic shell with identical elastic moduli but different  
lattice parameters a1 and a2 (Fig. 2(а)). The lattice misfit was defined by the parameter 
f = 2(a1 – a2)/(a1 + a2) > 0. The outer and inner radii of the shell were denoted by a and R0, 
respectively. During the coherent growth of the shell on the core, misfit strains and 
stresses should appear in the core-shell nanoparticle [1,2]. For some values of the system 
parameters f, a, and R0, the interface was supposed to transform into a semicoherent state 
corresponding to the formation of a misfit dislocation at it. Owing to the spherical 
 

 
 

Fig. 2. Model of a circular MDL with the Burgers vector b and the tangent vector l at the interface  
in a core-shell nanoparticle. The spherical (𝑅, 𝜑, 𝜃), cylindrical (𝑟, 𝜑, 𝑧) and Cartesian (𝑥, 𝑦, 𝑧) coordinate 

systems are shown. The geometric parameters of the system are the nanoparticle radius a,  
the nanoparticle core radius R0, the MDL radius c, and the MDL coordinate z0. The lattice parameters a1 

and a2 satisfy the inequality a1 > a2. Adopted from [39]  
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symmetry of the system, it was expected the formation of a vacancy (for f > 0) MDL around 
the core, which would partially compensate the lattice misfit. It is worth noting that 
earlier this problem got an approximate solution [2,12] for the case when the MDL was 
located in the equatorial plane of the nanoparticle and the core and shell were 
characterized by different elastic moduli.  

In the elastically homogeneous case [39], the first term 𝐸elof the energy difference 
𝛥𝐸 given by Eq. (14) can be derived from Eq. (1) in the limiting case of 𝑎𝑝 → 0. The second 
and third terms of 𝛥𝐸 are [39]: 

𝐸c ≈
𝐺𝑐𝑏2𝑍

2(1−𝜈)
,  (16) 

𝐸int = −
4𝜋

3

1+𝜈

1−𝜈
𝐺𝑏𝑐2𝑓 (1 −

𝑅0
3

𝑎3 ), (17) 
where Z = lnα and the parameter α can vary in the range from 1 to 4 when rcore = b [38]. 
In numerical calculations of [39], it was assumed that Z = 1.  

Introduction of Eq. (1) at 𝑎𝑝 → 0 with Eqs. (4), (5), (16) and (17) to Eq. (15) gave an 
analytical formula for the critical misfit fc [39]. Figure 3 shows the dependences of fc on 
the principal geometric parameters of the system: (a) the normalized position z0/R0 of the 
MDL for the two different outer radii of the nanoparticles a = 50b (solid curves) and 200b 
(dashed curves) with different values of the normalized core radius R0/a and (b) the 
normalized core radius R0/a for different values of the nanoparticle radius a at z0 = 0 (here 
the solid and dashed curves correspond to the strict [39] and approximate [2,12] 
solutions, respectively). Each of these curves separates the phase space (R0/a, fc) into two 
regions. In the region under the curve, the MDL formation is energetically unfavorable, 
while in the region above the curve, it is energetically favorable. As is seen from Fig. 3(a), 
for any value of R0/a, the minimum value of fc is reached for the MDL position in the 
equatorial plane of the nanoparticle (z0 = 0). Therefore, the first MDLs are expected to 
form in equatorial sections of the nanoparticles.  

In Fig. 3(b), the dashed curves correspond to the approximate solutions obtained 
in [2,12] for a thin shell on a massive core (R0/a →1) and for a massive shell on a small 
core (R0/a << 1). It is seen that the strict solution (15) coincides almost completely with 
the approximate solution for large nanoparticles and differs significantly from it for small 
nanoparticles, when the approximate solution somewhat overestimates the critical misfit 
parameter fc.  

For a fixed misfit parameter f, which, in the diagram (R0/a, fc), is represented by the 
horizontal line, the points of intersection f = fc determine the critical values of the 
normalized core radius 𝑅̃0 = 𝑅0/𝑎. The critical normalized radii 𝑅̃0, c1 and 𝑅̃0, c2 are such 
that the generation of an MDL is possible only in the range 𝑅̃0, c1 < 𝑅̃0 < 𝑅̃0, c2 and 
impossible neither for the extremely small core (𝑅̃0 < 𝑅̃0, c1) nor for the extremely thin 
shell (𝑅̃0 > 𝑅̃0, c2). For example, at fc = 0.01 and a = 200b, the critical values of the 
normalized radii of the cores are 𝑅̃0,𝑐1 ≈ 0.225 and 𝑅̃0,𝑐2 ≈ 0.935 (Fig. 3(b)). In absolute 
units, these estimates give 𝑅0,𝑐1 ≈ 45𝑏 and 𝑅0,𝑐2 ≈ 187𝑏.  

It is also seen from Fig. 3(b) that, for a given particle size, there is a minimum critical 
misfit fc,min, such that at f < fc,min, in the particle with a radius a the MDL generation is 
energetically unfavorable for any value of the ratio R0/a. For example, fc,min ≈ 0.005 for the 
curve with a = 200b and fc,min ≈ 0.014 for the curve with a = 50b.  
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Fig. 3. Dependences of the critical misfit fc on the geometric parameters of the system: (a) the normalized 
MDL position z0/R0 for the nanoparticle radii a = 50b (solid curves) and 200b (dashed curves) with different 

values of the normalized core radius R0/a and (b) the normalized core radius R0/a for different values  
of the nanoparticle radius a at z0 = 0 (the solid and dashed curves correspond to the strict [39] and 
approximate [2,12] solutions, respectively). The point (0.75, 0.03) corresponds to the experimental 

observation of a perfect MD in the Au-FePt3 nanoparticle with radius a = 29b [45]. Adopted from [39]  
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The point with coordinates (0.75, 0.03) in Fig. 3(b) corresponds to the experimental 
observation of a perfect edge MD in the Au-FePt3 nanoparticle with radius a = 29b [45]. 
It is seen that this point lies in the region f > fc (R0/a) where the generation of MDLs was 
predicted by the calculations [39]. 

A similar problem for a hollow core-shell nanoparticle was solved in work [41]. 
Figure 4 shows the corresponding model of a circular MDL placed at the core-shell 
interface in the plane 𝑧 = 𝑧0. In this case, the difference in the total energy of the system 
𝛥𝐸 due to the onset of the first MDL was approximated by Eq. (14), in which the first term 
was given by Eqs. (1) and (2), the second term by Eq. (16) and the third term by [41]: 

𝐸𝑖𝑛𝑡 = −
4𝜋

3

1+𝜈

1−𝜈

2
(1 −

𝑅0
3

𝑎3)
1−(𝑎𝑝/𝑅0)3

1−(𝑎𝑝/𝑎)3
 

.   (18) 
 

 
Fig. 4. Model of a circular MDL with the Burgers vector b and the tangent vector  at the interface in a 

hollow core-shell nanoparticle. The spherical (𝑅, 𝜑, 𝜃), cylindrical (𝑟, 𝜑, 𝑧) and Cartesian  (𝑥, 𝑦, 𝑧) 
coordinate systems are shown. The geometric parameters of the system are the nanoparticle radius a, 
the nanoparticle core radius R0, the pore radius ap, the MDL radius c, and the MDL coordinate z0. The 

lattice parameters a1 and a2 satisfy the inequality a1 > a2. Adopted from [41] 
 
In the limit 𝑎𝑝 → 0, Eq. (18) transforms to Eq. (17). As a result, the critical condition 

for the MDL formation is given in this case by the inequality 𝑓 > 𝑓c, where the critical 
misfit fc is determined by Eq. (15).  

Figure 5(a) shows the dependence 𝑓c(𝑧0/𝑅0) for 𝑎 = 100𝑏, 𝑅0/𝑎 = 0.8, and 
different values of the ratio 𝑎𝑝/𝑎. It is seen that fc increases both with 𝑧0/𝑅0 and 𝑎𝑝/𝑎 
ratios. It means that the most favorable position of the MDL is in the equatorial plane of 
a hollow core-shell nanoparticle as is also the case with solid core-shell 
nanoparticles [39]. It is also seen than both the MDL shift from the equatorial plane and 
pore growth in the core decrease the energetic preference of the MDL generation in 
hollow core-shell nanoparticles. 
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Fig. 5. Dependence of the critical misfit fc of a hollow core-shell nanoparticle with outer radius  

𝑎 = 100𝑏 on (a) the normalized MDL position 𝑧0/𝑅0 for the fixed normalized core radius 𝑅0/𝑎 = 0.8, 
and (b) the normalized core radius 𝑅0/𝑎 for the equatorial position (𝑧0 = 0) of the MDL, for different 

values of the normalized pore radius 𝑎𝑝 𝑎⁄ . The dashed curves correspond to full core-shell 
nanoparticles. Adopted from [41] 

 
Figure 5(b) illustrates the effect of the 𝑅0/𝑎 = 𝑅̃0 ratio on the critical misfit fc. Here 

the curves 𝑓c(𝑅̃0) were plotted for 𝑎 = 100𝑏, 𝑧0 = 0, and different values of 𝑎𝑝/𝑎. They 
have minima which give the minimal critical misfit 𝑓c,min such that no MDL can form at 
𝑓 < 𝑓c,minfor any 𝑅̃0. For 𝑓 > 𝑓c,min, there is a range 𝑅̃0, c1 < 𝑅̃0 < 𝑅̃0, c2, in which MDL 
generation is energetically favorable. When 𝑅̃0 < 𝑅̃0, c1 or 𝑅̃0 > 𝑅̃0, c2, the coherent state 
of the nanoparticle is more preferable. With raising f, this range increases. Similar results 
were reported earlier for MDLs in solid core-shell nanoparticles [39] (see also the above 
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discussion of Fig. 3(b)) and straight MDs in solid core-shell nanowires [46] and at the 
interface between a (nano)tube and surrounding infinite matrix [47]. As is seen, the pore 
strongly affects the curves 𝑓c(𝑅̃0): they become narrower with increasing the pore radius 
𝑎𝑝, and 𝑓c,min increases as well. As a result, the range (𝑅̃0,c1, 𝑅̃0,c2) decreases. Thus,  
the region of parameter values, in which the MDL formation is energetically favorable, 
drastically shrinks.  

The most important practical issues from the model [41] are the dependences of 
the minimal critical misfit 𝑓c,min and the critical shell thickness ℎ𝑐 = 𝑎(1 − 𝑅̃0,c2) on the 
ratio 𝑎𝑝/𝑎 (Fig. 6). It is seen from Fig. 6 that both 𝑓c,min and ℎc weakly depend on the 
𝑎𝑝/𝑎 ratio until it reaches the value of about 0.8. However, when 𝑎𝑝/𝑎 > 0.8,  
they drastically grow with 𝑎𝑝/𝑎. The authors of [41] concluded on a great potential in 
developing coherent (MD free) hollow core-shell nanoparticles by using cores in the form 
of thin-wall shells with the inner-to-outer radii ratio larger than 0.8. 

 

 
Fig. 6. Dependences of the minimal critical misfit 𝑓c,min and the critical shell thickness ℎc (at 𝑓 = 0.02) 

on the inner-to-outer radii ratio 𝑎𝑝/𝑎 for 𝑎 = 100𝑏 and 𝑧0 = 0. Adopted from [41] 
 
The solid and hollow core-shell nanoparticles considered in [39,41] were supposed 

single crystalline (solid and hollow SC-CSNPs). Krauchanka et al. [42] extended this 
energetic approach to the case of solid decahedral core-shell nanoparticles (Dh-CSNPs). 
Indeed, the most of bimetallic CSNPs contain noble metals (Au, Ag, Pt and Pd) whose 
nanoparticles are well known to be so-called pentagonal nanoparticles (PNPs) in the 
greater part of their populations.  

PNPs are multiply-twinned crystalline particles in the shape of either decahedron 
or icosahedron, or of close morphologies [48–51]. As a result, PNPs possess five-fold 
symmetry axes that are absent in bulk single crystals and pass through quintuple 
junctions of twin boundaries. These axes can be described in terms of positive partial 
wedge disclinations (WDs). For example, decahedral particles (DhPs) contain one WD [52], 
while icosahedral particles (IcPs) contain six WDs [53]. Due to these WDs, PNPs are 
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elastically strained and store high strain energy that can relax through generation of 
various lattice defects [48,50,51]. 

The elastic model of a spherical DhP can be given by a partial positive WD piercing 
the elastic sphere [43]. In solid DhPs, the WD stress relaxation was shown to occur 
through the generation of axisymmetric circular PDLs [54]. For hollow DhPs, a model was 
suggested that described the formation of multiple cracks at the twin boundaries with 
subsequent agglomeration of the initial cracks into a unite five-foldstar crack [55]. 

For a Dh-CSNP that is a DhP covered with a shell of another crystalline material, 
the superpositions of the WD and misfit strains and stresses were expected [42]. The 
stress/strain state of a WD axially pierced an elastic sphere (Fig. 7(a)) was given in [43]. 
The authors [43] showed that in the area around the line of a positive WD is 
hydrostatically compressed, while the peripheral area of the sphere is hydrostatically 
stretched. They suggested that stress relaxation in the system could naturally include 
nucleation of vacancies at the stretched surface of the sphere, their migration to the 
compressed region around the WD line, and their coagulation with formation of a circular 
PDL of vacancy type [54].  

 

 
 

Fig. 7. Model of a Dh-CSNP in its (a) initial and (b) partially relaxed states. The Cartesian (x, y, z), 
cylindrical (r, φ, z) and spherical (R, θ, φ) coordinate systems are shown. Adopted from [43] 

 
In a Dh-CSNP with𝑓 > 0 (Fig. 7(a)), the formation of such a PDL could be effective 

for both the WD and misfit stress/strain states (Fig. 7(b)). Since the equatorial planes are 
the most favorable positions for MDLs and PDLs in SC-CSNPs [39,41] and DhPs [54], 
respectively, it was suggested that the equatorial plane is the most favorable position of 
a MDL in a Dh-CSNP, too [43]. In this case, the total energy change caused by the partial 
relaxation in a Dh-CSNP reads [43]: 

𝛥𝐸 = 𝐸c + 𝐸el + 𝐸int,∇ + 𝐸int, f + 𝐸st,    (19) 
where the first two terms are the core and strain energies of the MDL, respectively, as 
before; 𝐸int∇ and 𝐸int, f are the energies of interaction of the MDL with the WD and  
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Fig. 8. Formation of a circular MDL of length L1 with the Burgers vector b in the Dh-CSNP leads to the 

formation of a monolayer with a step of radius d, height b and length L2 around a pole on the free 
surface of the shell. Adopted from [43] 

 
misfit stresses, respectively; and 𝐸st is the energy of the atomic step that forms on the 
Dh-CSNP free surface in the process of the generation of vacancies needed for the MDL 
creation (Fig. 8).  

The interaction energy 𝐸int,∇ is [54]:  
𝑊int, ∇ = 2𝜋𝐷𝑏𝑅1

2𝜔  [𝜈 ln
𝑡

2
+

21+𝜈(238+125𝜈)

30(7+5𝜈)
−

(7+𝜈)(1+3𝜈)

8(7+5𝜈)
𝑡2 −  

− ∑ (𝐴̃𝑚
(2𝑚+1)(2𝑚2+4𝑚+1+𝜈)

𝑚+1
+ 𝐵̃𝑚

2𝑚

𝑡2 ) 𝑡2𝑚𝑃2𝑚(0)+∞
𝑚=2 ].  

 (20) 

where R1 and R2 are the core and shell radii, respectively, of the Dh-CSNP (Fig. 7),  
𝑡 = 𝑅1/𝑅2, ω is the strength of the WD, 𝐴̃𝑚 =

𝜎𝑚−2𝑚𝜏𝑚

2𝑠𝑚
, 𝐵̃𝑚 = −

𝑝𝑚𝜎𝑚+2𝑞𝑚𝜏𝑚

2(2𝑚−1)𝑠𝑚
, 𝜎𝑚 = (2𝑚 −

−1)(𝑚 + 1)𝜏𝑚 −
4𝑚+1

2𝑚(2𝑚+1)
, 𝜏𝑚 =

(1−2𝜈)(4𝑚+1)

2(𝑚−1)𝑚(2𝑚+1)(2𝑚+3)
, ),221(21  ++++= mmsm  

𝑝𝑚 = = 2𝜈 − 1 + 4𝑚(1 + 𝑚), 𝑞𝑚 = 1 + 𝜈 − 4𝑚3 + (3 + 2𝜈)𝑚, and 𝑚 = 2,3,4, … .  
The interaction energy 𝐸int, f is given by [54] 𝐸int, f = −(8/3)𝜋2𝐷𝑓(1 + 𝜈)𝑏𝑅1

2(1 − 𝑡3). 
The surface step energy 𝐸st was estimated as [54] 𝐸st ≈ 𝜅𝜋𝐷𝑏2𝑅1√1 − 𝑡2/4 with 𝜅 ≤ 1. 
It is worth noting that the terms like 𝐸st have never been accounted for in previous 
theoretical models of MD formation. The authors [54] showed that it may give a strong 
effect on the critical conditions for this process. 

When the critical conditions are formulated as in the aforementioned 
models [39,41] in terms of the misfit parameter value as 𝑓 > 𝑓c, where fc  is the minimal 
value of the lattice misfit for which the generation of a MDL becomes energetically 
favorable, the equation 𝛥𝐸 = 0 gives [54]: 

𝑓c =
3(𝐸c+𝐸el+𝐸int, ∇+𝐸st)

8𝜋2(1+𝜈)𝐷𝑏𝑅1
2(1−𝑡3)

.   (21) 

Figure 9 shows the dependence of fc on the ratio t for the following set of material 
parameters: 𝛼 = 𝑒 (an average value in the range from 1 to 5 [38]), 𝜅 = 1, 𝜔 = 7°20′ ≈ 
≈ 0.128 rad, and 𝜈 = 0.3, for three different values of the normalized shell radius  
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Fig. 9. The dependence of critical misfit parameter fc on the ratio t = R1 / R2 at α = e for nanoparticles of 
different size (R2 / b = 20, 50, and 180) and type, (a,b) Dh-CSNPs and (c,d) SC-CSNPs, with (a,c) and with 

no (b,d) account for the surface step energy. Adopted from [43] 
 

𝑅2

𝑏
= 20, 50, and 180 in two cases: Fig. 9(a,b) for a Dh-CSNP (with 𝜔 = 0.128 rad) and, for 

comparison, Fig. 9(c,d) for a SC-CSNP (with 𝜔 = 0). Figures 9(a) and 9(c) illustrate the 
results obtained with taking into account the surface step energy term 𝐸st, while Figs. 9(b) 
and 9(d) show those obtained without this term. One can see that the curves 𝑓c(𝑡) are 
qualitatively similar for all the cases under consideration. They are also similar to the 
dependences calculated earlier in [39,41] (see Figs. 3(b) and 5(b)).  

However, the values of the critical parameters 𝑓c,min, 𝑡c1 and 𝑡c2 are quite different 
for these cases. For example, for Dh-CSNPs of radius 𝑅2

𝑏
= 20, 50, and 180 (Fig. 9(a)),  

the minimum critical misfit 𝑓c,min ~ 0.034, 0.016, and 0.003, respectively, while in the case 
of SC-CSNPs of the same radii (Fig. 9(c)), 𝑓c,min ~ 0.036, 0.018, and 0.006, respectively. 
Thus, the relative difference in the 𝑓c,min values increase as ~ 5.9, 12.5, and 100 % with 
increasing value of 𝑅2/𝑏.  

It is also seen that the interval [𝑡c1, 𝑡c2] where the MDL formation is energetically 
favorable for a given 𝑓 > 𝑓c,min is also larger for Dh-CSNPs than for SC-CSNPs.  
For example, at 𝑅2/𝑏 = 20 and 𝑓 = 0.04, it is approximately [0.45, 0.83] for Dh-CSNPs 
(Fig. 9(a)) and [0.52, 0.83] for SC-CSNPs (Fig. 9(c)). As noted in [43], the interval widening 
in Dh-CSNPs results from the diminishing 𝑡c1, while the value of 𝑡c2 remains practically 
the same for any fixed value of 𝑅2/𝑏. This means that 𝑡c1 is strongly affected by the 
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interaction of MDLs with WDs, modeling the five-fold symmetry axes in Dh-CSNPs, while 
𝑡c2 is mainly controlled by the misfit relaxation in the Dh-CSNPs and SC-CSNPs.   

The authors [43] also noted the different positions of the points of minimum of 
curves 𝑓c(𝑡) for Dh-CSNPs and SC-CSNPs. For Dh-CSNPs, this position significantly shifts 
to the region of smaller t with an increase in R2, from ~0.67 for 𝑅2 = 20𝑏 to ~ 0.26  
for 𝑅2 = 180𝑏 (Fig. 9(a)). In contrast, this position remains almost the same, in the range 
of 𝑡 ≈ 0.67 − 0.70, for SC-CSNPs.   

It was finally concluded [43] from Fig. 9 that Dh-CSNPs should be noticeably less 
stable with respect to the formation of MDLs than SC-CSNPs in the case of 𝑓 > 0. The 
account for the surface step energy leads to significant correction of the 𝑓c(𝑡) plots when 
the shell radius R2 is relatively small, when the surface energy contribution 𝐸st becomes 
comparable with other energy terms in Eqs. (19) and (21).  

A comparison of the theoretical results [43] with experimental observations of 
perfect MDs in Dh-CSNPs and SC-CSNPs is shown in Fig. 10. In particular, Ding et al. [45] 
observed MDs in Au-FePt3 Dh-CSNP and SC-CSNP with 𝑓 ≈ 0.03, 𝑡 ≈ 0.67 and 0.75,  
and 𝑅2 ≈ 16𝑏 and 15𝑏, respectively. The corresponding blue and black points lie a little 
higher the blue and black curves 𝑓c(𝑡) plotted at 𝛼 = 1 for these values of 𝑅2, and well 
fall into the intervals [𝑡c1, 𝑡c2] for these curves at 𝑓 = 0.03. Khanal et al. [56] observed 
three similar MDs in an Au-CuS2 Dh-CSNP with 𝑓 ≈ 0.11, 𝑡 ≈ 0.8 and 𝑅2 ≈ 74𝑏.  
The corresponding red point lies much higher the red curve 𝑓c(𝑡) plotted at 𝛼 = 1 for this 
value of 𝑅2, and obviously well falls into the interval [𝑡c1, 𝑡c2] for this curve at 𝑓 = 0.11. 
Thus, the results of the theoretical model [43] were in a good accordance with available 
experimental observations of perfect MDs in Dh-CSNPs and SC-CSNPs.  

 

 
Fig. 10. Theoretical curves fc(t) for Dh-CSNPs with shell radii R2 = 16 b (blue) and 74 b (red), and  
SC-CSNPs with shell radius R2 = 15 b (black), plotted for α = 1.   Experimental points (0.67, 0.03)  
and (0.75, 0.03) correspond to observation of perfect MDs in Au-FePt3 Dh-CSNPs and SC-CSNPs, 

respectively [45]. Experimental point (0.8, 0.11) corresponds to observation of perfect MDs in  
an Au-CuS2 Dh-CSNP [56]. Adopted from [43] 

 
The case of a solid core in the form of a hemisphere resting on the equatorial plane 

of a SC-CSNP (Fig. 11) was investigated in [40]. As before, for definiteness, it was assumed 
that 𝑎1 > 𝑎2 and, therefore, 𝑓 > 0. The misfit stress relaxation was supposed to occur 
through the transition of the SC-CSNP from the initial coherent state with no misfit 
defects (Fig. 11(a)) to a partly relaxed semi-coherent state, in which case a circular 
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prismatic MDL forms at the core-shell interface (Fig. 11(b)). The initial coherent 
strain/stress state in such a SC-CSNP was calculated by Kolesnikova at al. [57]. Based on 
this solution, the authors [40] assumed that, for 𝑓 > 0, the MDL should be of vacancy type 
and could form from vacancies which nucleate on the free surface of the SC-CSNP, in the 
polar region of higher positive values of the elastic dilatation, and migrate to the 
dilatationally compressed core (see Fig. 4 in [57]).  

 
 

 
Fig. 11. Model of a SC-CSNP with an axisymmetrical semispherical core in its (a) initially coherent and 

(b) partially relaxed states. Adopted from [40] 
 
The necessary condition for the MDL formation was given in [40] by the inequality 

𝛥𝐸 < 0, where the energy change 𝛥𝐸 is determined by Eq. (14). The first two terms on the 
right hand side of this equation are the strain and core energies, respectively, of the MDL 
as before, while the third term is the energy 𝐸int of elastic interaction of the MDL with the 
misfit stress field in the SC-CSNP with a semispherical core. The latter was found as the 
work spent to generate the MDL in the axial misfit stress 𝜎𝑧𝑧 through the integral [40]: 

𝐸int = −\𝜋𝑏𝑧 0
2 ∫ 𝜎𝑧𝑧(𝑧 = 𝑧0)

sin 𝜃

cos3 𝜃
𝑑𝜃

𝜃0

0  
,  (22) 

where b is the Burgers vector magnitude of the MDL, z0 is the MDL position with respect 
to the equatorial plane of the SC-CSNP (Fig. 11(b)), and 𝜃0 is the angular coordinate of 
the MDL line. 

The authors [40] calculated numerically the energy change 𝛥𝐸 for a model SC-CSNP 
with radius 𝑎 = 200𝑏 and Poisson ratio 𝜈 = 0.3. Figure 12 shows the dependence of 𝛥𝐸 
on the normalized coordinate 𝑧0/𝑅0 of the MDL plane (here R0 is the core radius) for 
different values of the misfit f and the ratio 𝑅0/𝑎 .  

In the case, when 𝑓 = 0.02 and 𝑅0/𝑎 is varied from 0.1 to 0.99 (Fig. 12(a)), the curves 
allow to predict the energetically favorable (𝛥𝐸 < 0) formation of the MDLs in SC-CSNPs 
with hemispherical cores of normalized radius 𝑅0/𝑎 = 0.2. . .0.9. The most favorable 
(optimal) position 𝑧0,𝑜𝑝𝑡 of the MDL is clearly indicated by the minimum at the energy 
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Fig. 12. Dependence of the energy change 𝛥𝐸 on the normalized coordinate of the MDL 𝑧0/𝑅0  

for (a) 𝑓 = 0.02 and different values of the ratio 𝑅0/𝑎, and (b) 𝑅0/𝑎 = 0.3 and different values of the 
misfit f. The small circles indicate the minima on the curves. Adopted from [40] 

 
curves. For 𝑅0/𝑎 = 0.2, it is 𝑧0,𝑜𝑝𝑡 ≈ 0.36𝑅0; for 𝑅0/𝑎 = 0.3, it is 𝑧0,𝑜𝑝𝑡 ≈ 0.33𝑅0; for larger 
values of the ratio, 𝑅0/𝑎 = 0.4 and 0.5, it remains approximately constant, 𝑧0,𝑜𝑝𝑡 ≈ 0.30𝑅0; 
and then it slightly decreases again with 𝑅0/𝑎. Finally, at 𝑅0/𝑎 = 0.9, it falls down to 
𝑧0,𝑜𝑝𝑡 ≈ 0.20𝑅0. For either very fine (𝑅0/𝑎 = 0.1) or very coarse (𝑅0/𝑎 = 0.99) cores, the 
MDL formation is not energetically favorable (𝛥𝐸 ≥ 0). It was also noted in [40] that the 
energy gain |𝛥𝐸min|, caused by the MDL generation, increases with the ratio 𝑅0/𝑎 in its 
interval from 0.2 to 0.8 and then drastically drops at 𝑅0/𝑎 = 0.9. 

In the case, when 𝑅0/𝑎 = 0.3 and f is varied from 0.01 to 0.15 (Fig. 12(b)), the misfit 
value 𝑓 = 0.01 can be treated as the critical one for this value of the ratio 𝑅0/𝑎.  
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The corresponding curve has a minimum at 𝑧0/𝑅0 ≈ 0.42 where 𝛥𝐸 = 0. At higher values 
of f (here from 0.03 to 0.15), 𝛥𝐸 < 0 for any value of 𝑧0/𝑅0. It is of interest that all these 
curves have minima approximately at the same point 𝑧0/𝑅0 ≈ 0.26. As it concluded 
in [40], for 𝑅0/𝑎 = 0.3 and any 𝑓 ≥ 0.02 (see also Fig. 12(a)), the optimal position of the 
MDL is 𝑧0,𝑜𝑝𝑡 ≈ 0.26𝑅0. It is also seen that the energy gain |𝛥𝐸min| monotonously 
increases with the misfit 𝑓 > 𝑓c ≈ 0.01.  

A detailed study of the optimal position 𝑧0,𝑜𝑝𝑡 in dependence on the misfit f and the 
ratio 𝑅0/𝑎 for 𝑎 = 200𝑏 and 𝜈 = 0.3 (see Fig. 4 in [40]) showed that, for a wide range of 
the model parameters, 𝑧0,𝑜𝑝𝑡/𝑅0 is close to 0.3. Then, taking 𝑧0/𝑅0 = 0.3, the authors [40] 
considered the dependence of the energy change 𝛥𝐸 on the ratio 𝑅0/𝑎  for different values 
of the misfit f in the interval from 0.001 to 0.030 (Fig. 13). The corresponding non-
monotonous curves 𝛥𝐸(𝑅0/𝑎) may have one or two extremum points in dependence on f. 
When f is relatively small (here 𝑓 = 0.001), the curve has a maximum (here at 𝑅0/𝑎 ≈ 0.9), 
and 𝛥𝐸 > 0 for any value of 𝑅0/𝑎, which means that no MDL can form around the core.  
At a larger value of f (here at 𝑓 = 0.004), the maximum shifts to the region of smaller 𝑅0/𝑎 
(here to the point 𝑅0/𝑎 ≈ 0.46), while a minimum appears on the curve  
(here at 𝑅0/𝑎 ≈ 0.7) , although 𝛥𝐸 > 0 still always. Then, at a critical misfit value fc 
(here 𝑓c = 0.0055), the energy change 𝛥𝐸 becomes negative in the region of its minimum 
(here at 𝑅0/𝑎 ≈ 0.74) , which means that a MDL can form around the core in such  
a SC-CSNP. The positions of the maxima strongly depend on f, shifting to smaller values 
of 𝑅0/𝑎 with increasing f, while the positions of the minima slightly shift to greater values 
of 𝑅0/𝑎, remaining however in the range from 𝑅0/𝑎 ≈ 0.74 to ≈ 0.78. 

  

 
 

Fig. 13. Dependence of the energy change 𝛥𝐸on the ratio 𝑅0/𝑎 for the normalized position 𝑧0/𝑅0 = 0.3 
of the MDL and different values of the misfit strain f. Adopted from [40] 

  

-1 

 

Δ
E

/G
b

3
, 
 ×

 1
0

3
 

 

-2 

 

0.5 

 

  f = 0.001 

 
0.004 

 

0.0055 

 

0.007 

 
0.010 

 

0.020

0.030 

 

R0 /a 
 

1.0 

 



Micromechanics of misfit stress relaxation in heterogeneous crystalline nanostructures: a review  19 
 

For 𝑓 > 𝑓c, there is an interval of 𝑅0/𝑎 values, where 𝛥𝐸 < 0, in which a MDL can 
form. Outside this interval, 𝛥𝐸 > 0 and no MDL can nucleate. The boundaries of this 
interval can be considered as critical values of the ratio 𝑅0/𝑎, (𝑅0/𝑎)c1 and (𝑅0/𝑎)c2,  
for a given value of f. When f increases, (𝑅0/𝑎)c1 decreases, while (𝑅0/𝑎)c2 increases. 
These conclusions of [40] are rather similar to those obtained earlier for axially symmetric 
core-shell nanowires [46] and CSNPs with centered spherical cores [2,39,41,42].  

When f is significantly larger then 𝑓c (here at 𝑓 = 0.02), the upper boundary (𝑅0/𝑎)c2 
of the interval practically disappears, while its lower boundary (𝑅0/𝑎)c1 still exists. 
However, when 𝑓 >> 𝑓c (here at 𝑓 = 0.03), both the maximum on the curve 𝛥𝐸(𝑅0/𝑎) and 
the critical interval disappear, which means that a MDL can form for any value of 𝑅0/𝑎.  

Since the point of minimum on the curve 𝛥𝐸(𝑅0/𝑎) remains almost the same,  
at 𝑅0/𝑎 ≈ 0.76 ≈ 3/4 (Fig. 13), the authors [40] concluded that SC-CSNPs with the ratio 
𝑅0/𝑎 ≈ 3/4  are the less stable to the MDL formation because in this case, the appearance 
of MDLs leads to the biggest energy gain |𝛥𝐸min| of the system. They also noted that their 
additional calculations showed that this result did not change for other values of  
the SC-CSNP radius a. 

Figure 14 shows the diagrams 𝑓c(𝑅0/𝑎) plotted in [40] for the SC-CSNPs with 
semispherical (solid red curves) and, for comparison, spherical (dashed blue curves) 
cores [39] for 𝑧0/𝑅0 = 0.3 and different values of the normalized radius 𝑎/𝑏 of the SC-
CSNP. The region under (above) the curve corresponds to the case when the MDL formation 
is not (is) energetically favorable. Similar diagrams were constructed and discussed in detail 
for different models describing the critical conditions of MD generation in the past 
[2,39,41,42,46] (see also Figs. 3(b), 5(b), 9, and 10 in the present review). In Fig. 14,  
the curves 𝑓c(𝑅0/𝑎) for SC-CSNPs with semispherical cores lie above the corresponding 
curves for SC-CSNPs with spherical cores in the range of 𝑅0/𝑎 < 0.9. It means that in this 
range, the SC-CSNPs with semispherical cores are more stable with respect to MDL 
generation than the SC-CSNPs with spherical cores. However, at 𝑅0/𝑎 ≈ 0.9, the curves 
for semispherical and spherical cores meet, which means that the SC-CSNPs with 
semispherical and spherical cores become equally stable (unstable) with respect to MDL 
generation. The authors [40] did not consider the range of 𝑅0/𝑎 > 0.9 because the misfit 
stress fields [57] poorly converge near the free surface of the SC-CSNP.  

It is worth noting that, for SC-CSNPs with semispherical cores, the formation of  
a straight MD at the core base along the diameter of a SC-CSNP was also considered [58].  
In this case, the recently found solution of the boundary-value problem in the elasticity 
theory for a straight edge dislocation in an elastic sphere [59] was used. It was shown that 
for relatively small cores, the formation of a straight MD at the core base is less favorable 
than the formation of a circular MDL around the spherical part of the core/shell interface. 
However, for cores whose radii are close to the shell radius, both of these mechanisms are 
approximately equivalent. The authors [58] explained it by the facts that for small cores, 
the self-energy of a MDL is significantly less than for a straight dislocation intersecting  
a SC-CSNP, and on the other hand, for large cores, the elastic fields of the MDL are too 
strongly screened by the free surface, which significantly reduces the interaction energy of 
the MDL with the misfit stress field. Therefore, as the core radius tends to the shell radius, 
the formation of a MDL becomes less favorable than the formation of a straight MD. 

 



20 M.Yu. Gutkin, A.L. Kolesnikova, S.A. Krasnitckii, K.N. Mikaelyan, D.A. Petrov, A.E. Romanov, A.M. Smirnov 

 
 

Fig. 14. Dependence of the critical misfit fc on the ratio 𝑅0/𝑎 for 𝑧0/𝑅0 = 0.3, 𝜈 = 0.3 and different values 
of the normalized radius 𝑎/𝑏 of the nanoparticle. The solid (red) curves show the solution  

for a semispherical core, while the dashed (blue) curves for a spherical core. Adopted from [40] 
 

In all the aforementioned models, the critical conditions for the onset of already 
formed MDLs in CSNPs were analyzed. However, neither the physical processes of MDL 
nucleation and formation nor the energy barriers, which could accompany these 
processes, were considered. To overcome these drawbacks, the authors of [60] suggested 
a model of nucleation of an initial defect configuration capable to develop in a final 
configuration of the first closed MDL around the core. They assumed that the initial defect 
configuration could be a small PDL nucleating from either the inner or outer boundary in 
the SC-CSNP and propagating into its core or into its shell. The critical conditions for 
nucleation of such a PDL were calculated by using Eqs. (14) and (15) with appropriate 
formulas for the energy terms [60]. In particular, the approximation of the classical linear 
isotropic theory of elasticity was used with the assumptions that the core and the shell 
had identical elastic moduli and that the shell thickness h was substantially smaller than 
the outer radius of the SC-CSNP R: h << R. With the latter assumption, the authors [60] 
passed in calculation of the strain energy term from the spherical to planar geometry of 
the problem and considered a rectangular PDL. In this case, the solution for the strain 
energy of a rectangular PDL located in a plane perpendicular to the plane of the free 
surface of the elastic half-space [61] was used. 

Thus, the authors [60] calculated the critical conditions for relaxation of misfit 
stresses in SC-CSNPs through the generation of rectangular PDLs at either the internal 
core-shell interface or the outer free surface with their subsequent propagation into the 
core or into the shell in the cases where the PDLs have the shape of a square or are 
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extended along or across the interface. As a result, they investigated the necessary 
conditions for the generation of PDLs of nine types classified according to the shape of 
the PDL and the position of its formation. It was shown that such PDLs can form when 
the misfit f exceeds a critical value that depends on R, h, the PDL formation position, and 
the shape of PDLs. For a PDL generating in the shell, this condition holds when h either 
lies in a specific range of small values or (for a larger value of f) is less than a critical 
value. For a PDL generating in the core, h should exceed a critical value. It was also shown 
that the PDLs elongated along the core-shell interface are formed easier. When the shell 
grows on the core of a fixed radius, the energetically more preferable generation of a PDL 
occurs first from the free surface into the bulk of the shell, then from the interface into 
the shell, and finally from the interface into the core of the SC-CSNP. 

The model [60] of misfit stress relaxation through generation of rectangular PDLs 
in SC-CSNPs was later extended to various heterogeneous nanostructures. In particular, 
PDL generation in heteronanostructures of spherical (solid [62,63] and hollow [62–64] 
SC-CSNPs), infinite cylindrical (solid [63–67] and hollow [63,64] core-shell nanowires), 
flat (bi- and tri-nanolayers [63,64]), and finite-length tubular [68] geometry was analyzed. 
Departing from the calculations of the misfit stress fields in the heteronanostructures,  
the authors investigated changes in their energies caused by the formation of PDLs in 
different regions of them, revealed the regions of the energetically more preferable 
generation of the PDLs and specified the optimum shape of the PDLs. Gutkin and 
Smirnov [63,64] compared the critical conditions for the onset of the most energetically 
favorable PDLs in different heteronanostructures and ranged the relative stabilities of 
these nanostructures against PDL formation. They concluded hollow nanostructures are 
always more stable than their solid counterparts, the cylindrical nanostructures are more 
stable than the symmetric flat tri-nanolayers, the spherical nanostructures are more 
stable than the cylindrical ones, and the flat bi-nanolayers are the most stable 
nanostructures among those under consideration. 
 
Critical conditions for misfit dislocation generation in composite nanowires  
Critical conditions for MD generation in composite nanowires of different architectures have 
remained in the focus of many authors for a long time (see, for example, books [11–13]  
and reviews [22–27,69]). The main segments in this field are theoretical models for: 
straight MDs [46,70–74], circular [30,70,75–80] and elliptic [81] MDLs, and rectangular 
PDLs [63,64] in core-shell nanowires (CSNWs) with cylindrical cores; straight MDs [82] 
and rectangular PDLs [65–67] in CSNWs with prismatic cores of hexagonal, squared and 
triangular cross section; straight MDs [47,83,84], circular MDLs [32] and rectangular 
PDLs [63,64] at/in nanotubes embedded to infinite matrix; straight MDs [85–87] and 
circular PDLs [88] in axially-inhomogeneous nanowires with transverse interfaces; 
straight MDs in bilayer nanowires with planar interfaces [89–93]; circular MDLs around 
axially symmetric finite-length cylindrical inclusions in nanowires [28]. 

Since the most of these models have been extendedly reviewed in recent years  
[24–27,69], here we briefly consider only some fresh results [91–93] which have been 
reported in conference talks but not published in regular journals yet.  
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Figure 15 shows a model [91] of the cross-section of a bilayer nanowire with a flat 
longitudinal interface in the initial coherent and partly relaxed states. The nanowire was 
supposed elastically isotropic and homogeneous. The initial coherent state in this case is 
different from those considered in earlier models [89,90] where the one-dimensional 
lattice misfit along the x-axis was assumed and modeled through a continuous 
distribution of virtual edge dislocations with infinitesimal Burgers vectors δb = δbex (here 
δb is the infinitesimal Burgers vector magnitude and ex is the ort of the x-axis). In 
models [91–93], the authors considered the general case of three-dimensional lattice 
misfit f = 2(a2 – a1)/(a2 + a1) and solved the corresponding boundary-value problem in the 
classical theory of elasticity.  

 

 
 

Fig. 15. Cross-section of a bilayer nanowire in (a) the initial coherent state and (b) the partly relaxed 
state with a misfit dislocation. Here a1 and a2 are the lattice parameters in the nanowire layers, R is the 
nanowire radius, y = y0 is the interface position, b is the Burgers vector of the misfit dislocation, and θ 

is the angle between the Burgers vector and the interface plane. Adopted from [91] 
 
The onset of the first straight edge MD at the interface (Fig. 15(b)) needs the 

fulfillment of the common inequality 𝛥𝑊 = 𝑊el + 𝑊c + 𝑊int, where 𝛥𝑊is the energy 
change caused by the generation of the MD, 𝑊el is the MD strain energy, 𝑊c is its core 
energy, and 𝑊int is the energy of interaction of the MD with the initial misfit stress in the 
nanowire. All these energy terms are calculated per unit length of the MD. Then the 
critical misfit follows from the equation 𝛥𝑊 = 0 as [91]:   

𝑓c =
3𝑔(𝑡)

8(1+𝜈)𝑠 cos 𝜃
(ln 𝛼 𝑠 + ln( 1 − 𝑡2) + 𝑡2 cos2 𝜃 −

3−4𝜈

4(1−𝜈)
),   (23) 

where 𝑠 = 𝑅/𝑏, 𝑡 = 𝑦0/𝑅, α is the dislocation core energy parameter [38], ν is the Poisson 
ratio, and 𝑔(𝑡) is the dimensionless function equal to 1 for 𝑡 = 0 and given by:  

𝑔(𝑡) =
2𝑡3

3(1−𝑡4)(arcsin 𝑡−𝑡√1−𝑡2)
, for 0 < |𝑡| < 1.   (24) 

Figure 16 shows the dependence of the critical misfit fc on the normalized position 
t of the interface for different values of radius R at 𝑣 = 0.3, 𝛼 = 𝑒 (here e is the base of 
natural logarithm), and 𝜃 = 30°. As is seen, the critical misfit 𝑓c depends on both the 
nanowire radius R and interface position y0. It increases with a decrease in R and behaves 
non-monotonously with an increase in y0: 𝑓c slowly decreases with y0 at relatively small 
values of y0, reaches its minimum value 𝑓c,min at some intermediate value of y0 varying 
from roughly 0.48R in the range of relatively large values of R (here for 𝑅 ≥ 50𝑏) to 
roughly (0.50−0.54)R at smaller values of R (here at 𝑅 = 25𝑏 and 10b), and then increases  

(a) (b) 
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Fig. 16. Dependence of the critical misfit 𝑓c on the normalized position t of the interface for different 
values of the normalized radius 𝑠 = 𝑅/𝑏 at 𝑣 = 0.3, 𝛼 = 𝑒, and 𝜃 = 30°. The open dots indicate the 

minima of the curves. Adopted from [91] 
 
with y0, especially fast when 𝑦0 ≥ 0.8𝑅. Thus, it was shown in [91] that bilayer nanowires 
with asymmetric position 𝑦0 ≈ 𝑅/2 of the interface are the most unstable with respect to 
MD generation. 

The misfit stress relaxation in the same model system (Fig. 15(a)) through the 
formation of equilibrium discrete ensembles of edge MDs was considered in [92]. The 
number and arrangement of MDs were chosen to minimize the energy W of the system 
per unit area of the interface. As a result, the dependence of this energy W on the misfit 
f was studied for 𝑅 = ℎ and 2h, where ℎ = 𝑅 − 𝑦0 is the maximum thickness of the ‘upper’ 
layer, and compared with that for a thin flat epilayer of thickness h on a thick substrate 
(Fig. 17). It is seen that, for a given value of h, the misfit relaxation with increasing f in 
the nanowire begins expectedly later than, for example, in a thin flat epilayer on a thick 
substrate. On the other hand, it was also shown [92] that, at a sufficiently high level of f 
(here for f > 20 %) the density of the MD ensemble is practically independent on the 
configuration of the system. 

 

 
 

Fig. 17. Dependence of the energy W on the misfit f for ℎ = 20𝑏. Here 𝐷 = 𝐺/[2𝜋(1 − 𝜈)], G is the 
shear modulus, ν is the Poisson ratio, and b is the Burgers vector magnitude of the misfit dislocations. 

The dashed curves show similar dependences for the corresponding systems in the coherent state  
(with no MDs). Adopted from [92] 
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Fig. 18. A straight edge MD piercing a symmetrical bilayer nanowire normally to its axis. Based on 
results given in [93] 

 

 
 

Fig. 19. Dependence of the critical misfit 𝑓c for the formation of straight edge MDs in different Janus 
nanostructures – a symmetrical bilayer cylinder of radius R, a sphere of radius R and a plate of thickness 

2R – on their normalized characteristic size R/b at 𝑣 = 0.3 and 𝛼 = 𝑒. Based on results given in [93] 
 

 
 

Fig. 20. Dependence of the critical misfit 𝑓c for the formation of straight edge MDs in different Janus 
nanostructures – a symmetrical bilayer cylinder of radius R, a sphere of radius R and a plate of 

thickness 2R – on their normalized characteristic size R/b at 𝛼 = 𝑒 and (a) 𝜈 = 0 and (b) 𝜈 = 0.49. 
Based on results given in [93] 

 
MD lines in models [89–92] were parallel to the nanowire axes. Obviously, it would 

be also reasonable to consider the nonparallel case. However, modeling of such 
configurations is hindered by the lack of analytical solutions for the boundary-value elastic 
problems on cylinders with straight dislocations piercing the free surface of the cylinders. 
Thus, calculating the dislocation strain energy 𝑊el becomes a matter of numerical 
approximations. On the other hand, the interaction energy 𝑊int can still be obtained 
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analytically with the aforementioned solution for the misfit stress-field of a bilayer 
nanowire [92]. In such a manner, the misfit stress relaxation in a symmetrical bilayer 
cylinder via the formation of an edge MD perpendicular to the cylinder axis (Fig. 18) was 
considered in [93]. The strain energy 𝑊el was calculated with the finite element method 
and verified by comparison with several well-known analytical solutions for other systems. 
The results show that the values for the critical misfit fc for both the parallel and 
perpendicular MDs in a symmetrical bilayer cylinder are rather close (Fig. 19). However,  
it is of interest that the exact relation between those two cases depends on the Poisson 
ratio ν (Fig. 20): for 𝜈 = 0, the perpendicular MD is more preferable than the parallel one, 
while for 𝜈 = 0.49 it is vice versa, and for intermediate values (here for 𝜈 ≈ 0.3, see Fig. 19), 
the critical misfits are practically equal. In any case, both the critical misfits for a bilayer 
cylinder of radius R lie between the critical misfit values for a symmetrical bilayer plate 
of thickness 2R and a Janus sphere of radius R. Thus, comparing different architectures of 
Janus nanostructures, one can conclude that the Janus plate is less stable to the MD 
generation than the Janus cylinder, while the latter is less stable in this respect than the 
Janus sphere. This result well corresponds to the earlier comparison of the stability of 
different misfitting nanostructures to the formation of small rectangular PDLs [63,64]. 
 
Theoretical models for misfit dislocations in free-standing composite nanolayers  
The theoretical models describing the elastic fields and strain energy of MDs, and critical 
conditions for their generation in free-standing composite nanolayers were suggested 
and studied by a number of authors. In particular, they considered: straight edge MDs in 
misfitting bi- [44,94–102], tri- [102,103], and multilayers [94] with two free surfaces and 
either different [44,94–96,99–102] or equal [96,98,103] elastic constants, isotropic 
[44,94–98,103] and anisotropic [99–102]; a periodic set of straight screw interfacial MDs 
normally piercing the free surfaces of a plate-like heterogeneous bicrystal with different 
isotropic elastic moduli [104,105]; dipoles of straight edge MDs in the interfaces of a 
lamellar inclusion piercing a nanolayer normally to its free surfaces [106,107]; a circular 
MDL in the interface of a circular cylindrical inclusion piercing a nanolayer normally to 
its free surfaces [108]; straight edge MDs in a nanolayer with an embedded nanowire of 
rectangular cross section with the faces parallel and normal to the nanolayer free 
surfaces [109]. It is worth noting that model nanostructures in works [106–109] were 
assumed elastically isotropic and homogeneous.  

Some of the authors concentrated their attention on the calculation of elastic fields of 
some presumed periodic configurations of MDs at the interfaces [94,95,97,99,100,104,105], 
while the others also analyzed the energetics of partly relaxed nanolayers with MDs 
[44,96,98,101–103,106–109], the critical conditions for the onset of MD generation 
process [44,96,103,106–109], and the energy barriers for its realization [103,109].  
The discussion of the critical conditions was based on the calculation of the energy changes 
accompanied the MD appearance in the misfitting nanolayers as was also the case with 
composite nanoparticles and nanowires (see the previous sections). The differences were 
in the self-strained energies of MDs and the energies of their interaction with the initial 
misfit stresses that were found according to the geometry of the nanolayers under study. 
Moreover, the earlier models [44,94–100] were already reviewed in book [11]. To avoid 
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repeating, here we consider in more details only the most recent models [103,109] dealing 
with analyzing possible mechanism of MD generation with corresponding critical 
conditions and energy barriers. 

Mikaelyan et al. [109] suggested a model of misfit stress relaxation in and around  
a nanowire of rectangular cross section embedded in a nanolayer in such a way that 
opposite faces of the nanowire are parallel or normal to the nanolayer surfaces (Fig. 21). 
Within the model, an edge of the nanowire, which is closer to the nanolayer surface, emits 
a dipole of edge dislocations, either perfect or partial, which glide along the nanowire 
face normal to the free surfaces of the nanolayer. One of these dislocations glides from 
the nanowire edge to the free surface, while the other one glides to the middle of the 
nanowire face. Based on the earlier solutions of the boundary-value problems in the 
theory of elasticity for a rectangular dilatational inclusion in a thin layer [110] and for an 
edge dislocation in a thin two-layer plate [111], the authors calculated the total energy 
change 𝛥𝑊 caused by the dislocation emission and analyzed it with the help of energy 
maps built in coordinates of emitted dislocations x1 and x2. 

 

 
Fig. 21. Misfit stress relaxation near a nanowire having a rectangular cross section with sizes 2𝑙 × 2𝑎, 
embedded in a nanolayer of thickness 2d, through the emission of a dipole of edge dislocations with 

Burgers vectors ±𝒃 from one of two nanowire edges which are closer to the free surface of the 
nanolayer. Adopted from [109] 

 
Figure 22 shows some examples of these energy maps 𝛥𝑊(𝑥1, 𝑥2) plotted for  

a model nanostructure of a Ge nanowire embedded in a Si nanolayer with the following 
set of the material parameters: the misfit value 𝑓 = 0.042, the shear modulus 𝐺 = 60 GPa, 
the Poisson ratio 𝜈 = 0.26 and the stacking fault energy 𝛾𝑆𝐹 = 0.069 Jm-2 (for the case of 
emission of partial dislocations). The Burgers vector magnitudes for partial and perfect 
dislocations were 𝑏 = 0.23  and 0.46 nm, respectively. For the sake of definiteness, the 
authors [109] fixed the position of the nanowire center in the nanolayer as 𝑥0 = 25 nm.  
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Fig. 22. The maps of the energy change 𝛥𝑊(𝑥1, 𝑥2) in the coordinates of emitted dislocations for the 
model nanostructure of a Ge nanowire embedded in a Si nanolayer for (a, c) partial and (b, d) perfect 

dislocations at 𝑥0 = 25 nm, 2𝑎 = 20 nm, 2𝑙 = 50 nm, and 2𝑑 = 100 nm (a, b) and 200 nm (c, d).  
The energy values are given in eV/nm. Adopted from [109] 

 
They also assumed that the crystalline lattices of the nanowire and nanolayer materials 
were oriented in such a manner that the glide plane of the dislocations was of {111}-type, 
that is the plane of easy slip for partial (Shockley) dislocations. 

With these assumptions, the authors [109] chose the sizes of the nanowire cross section 
as 2𝑙 = 50 nm and 2𝑎 = 20 nm and plotted the energy maps 𝛥𝑊(𝑥1, 𝑥2) for partial 
(Fig. 22(a,c)) and perfect (Fig. 22(b,d)) dislocations for two typical values of the nanolayer 
thickness 2𝑑 = 100 nm (Fig. 22(a,b)) and 200 nm (Fig. 22(c,d)). The starting points of 
dislocation emission were assumed to be 𝑥10 = 𝑥0 + 𝑎 − 𝑏 = (35 − 𝑏) nm and  
𝑥20 = 𝑥0 + 𝑎 + 𝑏 = (35 + 𝑏) nm, so after emission the coordinate 𝑥1 decreased, while the 
coordinate 𝑥2 increased. In a map, these starting points give a point (𝑥10, 𝑥20) = (35 − 𝑏, 35 + 𝑏)  
which lies near the top left corner of the map. As is seen, this point is situated in the region 
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of positive values of 𝛥𝑊, and the value of 𝛥𝑊(𝑥10, 𝑥20) may be considered as an energy 
barrier Wem for dislocation emission. The calculations showed [109] that for partial 
dislocations, Wem is about 2.8 eV/nm for 2𝑑 = 100 nm and 3.0 eV/nm for 2𝑑 = 200 nm; 
for perfect dislocations, Wem is about 13.1 eV/nm for 2𝑑 = 100 nm and 13.4 eV/nm for  
2𝑑 = 200 nm. Thus, the authors [109] concluded that the energy barrier strongly depends 
on the type of emitted dislocations but weakly depends on the nanolayer thickness.  
On the other hand, they also showed that Wem weakly depends on the nanowire size.  

Figure 23 shows the dependence of Wem on d for two different values of 2l, 2𝑙 = 10 
and 50 nm, at 2𝑎 = 20 nm. As is seen from Fig. 23, Wem increases with a decrease in the 
nanowire size. This is so because the misfit shear stress at the points of dislocation emission 
increases with the nanowire size [112]. The authors [109] concluded that, in general, the 
nucleation of partial dislocations is much more probable than that of perfect dislocations  
in this model system of Ge nanowire in Si nanolayer. In particular, at 𝑊𝑒𝑚 ≈ 3 eV/nm,  
the partial dislocations can be emitted even at room temperature in this system. In 
contrast, the emission of perfect dislocations with 𝑊𝑒𝑚 ≈ 13 eV/nm is possible only at 
much higher temperatures. 

 

 
 

Fig. 23. Dependence of the energy barrier Wem on the nanolayer half-thickness d for partial and perfect 
dislocations at the following values of the system parameters: 𝑥0 = 25 nm, 2𝑎 = 20 nm, and  

2𝑙 = 10 and 50 nm. Adopted from [109] 
 
It is evident from the energy maps in Fig. 22 that if the dislocation dipole nucleate, 

the dislocations start to feel at once driving thermodynamic forces which stimulate their 
glide to the opposite directions. In a map, their motion is reflected by the trajectory which 
follows the maximum gradient of the function 𝛥𝑊(𝑥1, 𝑥2) and tends to the minimum of 
this function. In the case of partial dislocations, this minimum can be localized either on 
the right margin of the map (Fig. 22(a)) or in its central region (Fig. 22(c)). The first 
situation is characteristic for a relatively thin nanolayer (here with the thickness  
2𝑑 = 100 nm) when one dislocation (with coordinate 𝑥1; the authors [109] called it  
𝑥1-dislocation) reaches its stable equilibrium position 𝑥1𝑒𝑞 ≈ 26 nm at the middle of the 
nanowire face, while the other dislocation (with coordinate 𝑥2; the authors [109] called 
it 𝑥2-dislocation) achieves its stable equilibrium position 𝑥2𝑒𝑞 = 50 nm on the free 
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surface of the nanolayer. The second situation is characteristic for a relatively thick 
nanolayer (2𝑑 = 200 nm) when the 𝑥1-dislocation also reaches its stable equilibrium 
position 𝑥1𝑒𝑞 ≈ 26 nm at the middle of the nanowire face, while the 𝑥2-dislocation stops 
inside the nanolayer, at the stable equilibrium position 𝑥2𝑒𝑞 = 67 nm.  

In the case of perfect dislocations, the minimum of function 𝛥𝑊(𝑥1, 𝑥2) was always 
localized on the right margin of the map (Figs. 22(b,d)). As follows from its position,  
the 𝑥1-dislocation reaches its stable equilibrium position 𝑥1𝑒𝑞 ≈ 25 nm at the middle  
of the nanowire face, while the 𝑥2-dislocation glides to its stable equilibrium positions  
𝑥2𝑒𝑞 = 50 nm (for 2𝑑 = 100 nm) and 100 nm (for 2𝑑 = 200 nm) on the free surface of the 
nanolayer. 

Thus, the calculations of [109] show that perfect dislocations (if they can overcome 
the energy barrier for their nucleation) must occupy two stable equilibrium positions, one 
in the middle of the nanowire face and the other one on the free surface of the nanolayer. 
This situation does not depend on the nanowire and nanolayer sizes. In the case of partial 
dislocations, whose nucleation is much more probable than that of perfect ones, one 
dislocation must always occupy its stable equilibrium position at the middle of the 
nanowire face, while the equilibrium position of the second dislocation depends on the 
nanowire and nanolayer sizes.  

Colin [103] considered a model of misfit strain relaxation in a three-layer structure 
through the climb of one and two straight edge dislocations from the ‘upper’ free surface 
(Fig. 24). He calculated the equilibrium positions of the dislocations, the energy barriers 
for their climb to the interface, and the critical misfit values for their generation under 
the assumptions that the second dislocation climbs in the same path as the first one and 
that the effects of the ‘lower’ free surface on the dislocation stresses can be neglected.  

 

 
 

Fig. 24. Two layers of material B and thickness hB cover a matrix of material A and thickness hA. An edge 
dislocation with Burgers vector b = (b, 0) lies at a position (0,−p1) in the upper layer. Adapted from [103] 

 
Conclusions 
In general, it is shown that both classical and novel methods of the theory of spatial 
elasticity in combination with the micromechanics of defects form an effective approach 
which allows adequate description of the relaxation of misfit stresses in various 
inhomogeneous crystalline nanostructures – composite nanoparticles, nanowires and 
nanolayers. In recent decades, many new theoretical models have been elaborated within 
this approach. Significant progress has been achieved in describing the dislocation 
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mechanisms, the energy barriers, and the critical conditions of misfit stress relaxation in 
newly considered misfitting nanostructures such as solid and hollow core-shell 
nanoparticles and nanowires, core-shell nanowires with faceted cores, Janus 
nanoparticles and nanowires, spherical nanoparticles with semispherical cores, axially-
inhomogeneous nanowires with planar transverse interfaces, embedded nanotubes, and 
free-standing nanolayers with embedded nanowires. Based on these achievements, one 
can conclude that the relative stability of different misfitting nanostructures to stress 
relaxation through generation of MDs increases with a decrease in the dimension of the 
nanostructures having the same characteristic sizes: the planar nanolayers (quasi  
2D-nanostructures) are less stable than the cylindrical ones (quasi 1D-nanostructures), 
and the latter are less stable than the spherical ones (quasi 0D-nanostructures). 
Generation of partial MDs needs lower energy barriers to overcome than that of perfect 
MDs, although perfect MDs provide more effective relaxation of misfit stresses than 
partial MDs. 

Among the problems of special interest in the nearest future, the following research 
areas can be noted: 
1. further development of theoretical models of misfit stress relaxation in already 
analyzed nanostructures with special attention to the calculation of energy barriers for 
MD formation and equilibrium densities of MDs belonging to different families (for 
example, straight MDs and MDLs in core-shell nanowires); 
2. comparative studying (when suitable and possible) the models for generation of partial 
and perfect MDs in various misfitting nanostructures; 
3. invention of effective approaches for analytical modeling the misfit stress relaxation 
in faceted core-shell nanowires and nanoparticles; 
4. formulation and solution of new boundary-value problems in the theory of elasticity 
for straight dislocations and disclinations shifted from the axial position in bulk, hollow 
and inhomogeneous spheres; 
5. solution of new boundary-value problems in the theory of elasticity to determine misfit 
stress fields in inhomogeneous crystalline nanostructures with diffuse interfaces; 
6. development of theoretical models for misfit stress relaxation in inhomogeneous 
crystalline nanostructures with diffuse interfaces.  

It is expected that any progress in dealing with these problems will allow to obtain 
new results that will be useful for better understanding the behavior of defects, stress 
relaxation and related phenomena in real device nanostructures. 
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