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ABSTRACT

This work examines the influence of quantum dots embedded in semiconductor nanowires with lattice
parameters different from those of the surrounding nanowire material on the nanowire band gap. Using
the found analytical formulas for the elastic fields of cylindrical, hemispherical, and conical inclusions
simulating quantum dots and located along the nanowire symmetry axis, the maps of the elastic dilations
are depicted and the regions of their extremes near the nanowire surface are identified. Calculations are
performed within the framework of the isotropic linear theory of elasticity. For GaN nanowires containing
axisymmetric quantum dots of varying shapes and compositions, the deformation potentials and
corresponding changes in the band gap in the nanowire regions of elastic dilation extremes are calculated.
The dependence of local change in the band gap in GaN nanowires on the lattice mismatch parameter
between the quantum dots and NWs are presented. It is shown that the semiconductor nanowire band
structure depends on the quantum dot shape, material, and size, and the band gap of GaN nanowires can
locally vary by approximately 10 % of its tabulated value. The response of the band gap of a semiconductor
nanowire to the elastic field of quantum dot embedded in this wire allows one to nanowire band gap
engineering by varying the parameters of the quantum dot.
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Introduction

With the development of modern science and technology, quantum dots are playing an
increasingly important role in electronics, optoelectronics, photonics and other
applications [1,2]. Quantum dots (QDs) are tiny semiconductor particles, typically ranging
in size from 2 to 10 nanometers, possessing unique optical and electronic properties due
to quantum mechanical effects [3-5]. The optical and electronic properties of QDs are
determined by their size and shape, which allows for precise control of light emission and
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absorption [6,7]. Crystalline QDs embedded in the matrix of another crystalline material
possess an elastic field [8-10] depending on QD and matrix shape, material and size. This
results in the emergence of a deformation potential in the QDs themselves and the
surrounding matrix. This deformation potential influences the formation of the band
structure of the QDs and the matrix [11-14]. QDs embedded in nanowires (NW) uniquely
combine the tunable optical properties of QDs with the unique electronic and
optoelectronic characteristics of the nanowires, enabling precise control of the quantum-
optical behavior of the semiconductor wire heterostructure. This makes them highly
promising for applications in quantum photonics, optoelectronics, and sensors [15-17].
As mentioned above, the strain induced by the presence of QDs in NW strongly affects
the band structure of the nanowires. Detailed studies of the influence of QD strain on the
band structure of nanowires can be found in a few papers [18-20].

In this paper, using our analytical calculations, we briefly analyze the elastic strain
field of cylindrical, hemispherical, and conical QDs in nanowire. Then, in the framework
of the k-p perturbation theory approach, we study the effect of QD induced strains on the
electronic band gap of GaN nanowires.

Elastic field of the quantum dot in the wire

The QD buried in material matrix can be modeled by an elastic dilatational inclusion (DI)
with an eigenstrain Plg}; due to the mismatch between the lattice constants of the QD
and the surrounding crystal matrix:

Dlex = &*5(0), (1)

where 6(2) = {é : Z }Qz
coordinate in any orthogonal coordinate system.

In Eq. (1), misfit parameter £* is found using the following relationship (see, for
example, [21,22]):
e = aQp—Aam (2)

)

0 is the DI region. There is no summation of i in Plg;, iis a

am

where aqp and a,, are the lattice constants of QD and surrounding matrix in the absence
of strains. For the crystal lattice parameters, a and ¢ of wurtzite structure In,Gai«N,
Vegard’s law is applied [23,24]:
AingGareN = X * AN+ (1 = X) - dgan, CingGag v = X Cn + (1 = X) - Cgan (3a,b)
In our consideration, QDs are axially symmetric DIs of the cylinder, hemisphere and
cone shapes (Fig. 1). To calculate the elastic fields of DIs in NW, we model Dls as a set of
infinitesimally thin coaxial disks (DDs) of radius ¢ with eigenstrain PPg}; [25-27],
uniformly distributed with a constant density p along the axis of symmetry:

Pes; = bH (1-1) 8(z — o), (4)

Dle; = [ ;i (r,z = 20)pdzo = [[* bH (1—2) 8(z — 20)pdz, = £'5(2), (5)
1,(>0
0,{<0
step function, §(z) is the Dirac delta-function, c¢ is the radius of the disk, z, is the
coordinate of disk, and [z, z,] is an extent of DI along the z-axis.

In this approach, the elastic fields of DIs are obtained by integrating the

where b is a coefficient with the dimension of length, H({) = { is the Heaviside
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corresponding components of the elastic fields of infinitesimal thin DDs in NW, found by
us earlier [28,29].
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Fig. 1. Quantum dots modeled by the dilatational inclusions in the shape of a cylinder - Cyl (a),
a hemisphere - Sl (b), and a cone - Cl (c), embedded in a circular nanowire - NW. The cartesian (x, y, z),
cylindrical (r, ¢, z), and spherical (R, 8, ¢) coordinate systems are shown. Dilatational disks — DDs, which
are used to "assemble” the inclusions, are also depicted

The elastic fields (displacements 'y, strains P'e;;, and stresses Plo;;) of DI in NW
include two parts: the first part corresponds to DI in infinite elastic space, the second part
corresponds to the contribution of the free surface of NW, see [28,29] and [30], in which
DD and DI have the same radius as NW.

For example, total displacements Plu; of DI are calculated by the following equation:
Ply, = fzzlz DDy (r, z — zy)pdzy = “Plu; + MPly;. (6)
where *Ply; and ™Ply; are displacements of DI in an infinite elastic media and image part
due to effect of free lateral surface of NW, respectively [28,29]. Note that all the fields
found have an analytical representation in the form of integrals or series.

Based on Eq. (6), we can find elastic strains for axially symmetric DI by the following
expressions in the cylindrical (r, ¢, z) and spherical (R, 6, ¢) coordinate systems:

aDI DI

Pl = X — £°5(02), ey = % — £°5(0), (7a,b)
aPly . 1 /0Py aPly

Vs = azz —&"8(), Ve, = E( azr + ar Z)’ (7¢,d)
6Dlu . 1 aDIu Dlu "

Dl = 6RR —£*85(), Plegg = E—aee + TR —£*5(Q), (8a,b)
DI DI DI DI DI

DI _ _ug CUR o« DI _1(13 ug , 9'ug ue)

Epp = — COt 0 + - € 6(2), “egg = >\ 30 Py 5 (8c,d)
The elastic hydrostatic strain of DI in NW is determined by following equation:
Pig =Dlg + Dls(p(p +Pley, = Plepp + Plegg + DISWJ- ©)

From Eq. (9), we can depict the maps of the distribution of the elastic hydrostatic
strains for considered QDs in NW as it is shown in Fig. 2.
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Fig. 2. The maps of elastic hydrostatic strains due to Ing,GaosN quantum dots (QDs) in GaN nanowire (NW):
(@) cylindrical @D, (b) hemispherical QD, and (c) conical QD. The parameters for calculations: the volume
of the base of QD V = 1447 nm3; NW radius and the radius of QD base are 10 and 6 nm, respectively;
the Poisson ratio of GaN v = 0.234 [22]; the misfit parameter of Ing,GagsN in GaN matrix is €* = 0.021

Effect of the strain on the NW band gap

The influence of strain of QD on the band structure is evaluated using the k-p perturbation
approach proposed by Bir and Pikus [11]. In unstrained wurtzite GaN, there are three
closely spaced top valence bands (VB) at the center of the Brillouin zone, commonly
referred to as heavy-hole (HH), light-hole (LH), and crystal-field split-off hole (CH) [14,31].
These VB states have atomic p-orbital character, in contrast to the bottom conduction
band (CB), which has atomic s-orbital character. The presence of QDs in the material
matrix creates a strain field, thereby changing the band structure of the material through
the deformation potential. Since the large band gap of GaN reduces the interaction of CB
and VB states, the Hamiltonian for the strain dependence of VB can be separately given
by the 6 x 6 matrix [11]:

F 0 —-H* 0 K 0
/ 0 G 4 -H 0 K*\
\=H 4 2 0 I o |
o=l o gy o 21 a4 1| (10)
\K o I 4 G 0
o K 0 I 0 F

Here A=+24;, F=A,+4,+A+0; G=A4,—-A,+1+0, K=~Ask?+ Dse,,
H = i(Agksk, + Asky + Dge,y), 1 =i(Agkky — Ak, + Dge,y), A =Ajk2+ Ak% +
+D18,, + Dy(Exx + €yy), 0 = AskZ + Agk? + Dseyy + Dy(ey + €yy), ki = ky £ ik,
ki =ki+ki, ky=kytiky,, e,0 =&, tigy,, €4 = &y — &y T 208y, € = &4x + &y,
where parameters D; (j = 1-6) denote the deformation potentials VB, and A; (j =1 to 7) are
equivalent to the Luttinger parameters [31], parameter 4, is the crystal-field parameter,
while 4, and A4; are the spin-orbit energy parameters. The diagonalization of the

matrix (10) yields the three distinct VB maxima E,,;.
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The edge of conduction band E, (due to strain) can be expressed as [14,32]:

n2kZ | h2(kZ+k3)
= +aye,, +a (& + Eyy), 11
2me| 2me, I€zz J_( XX yy) ( )

where k,,k,, k,are components of wave vector on direction of the x,y,z axes
respectively; respect a,, a; and m,,m,, denote the CB deformation potentials and
electron effective mass, respectively. Here we only consider the ground energy state
(k=0), so Egs. (10) and (11) are much simplified. The band structure parameters for
wurtzite GaN are presented in Table 1.

Cc

Table 1. Band structure parameters for wurtzite GaN [33]

Parameters Values, eV Parameters Values, eV
E, 3.479 D, -41.4
Der 0.010 D, - 333
Dso 0.015 Ds 8.2
A=A 0.022 D, -4.1
A, =A; = Agn/3 0.005 Ds -4.7
a” -445 Dé -7.5
a, - 445

The strains influence both valence and conduction bands via Egs. (10) and (11),
therefore the band gap of material changes due to the strains. The strong change of band

gap is near the lateral surface of NW. The distribution of the change of band gap AE;ef
along lateral surface of NW is shown in Fig. 3.
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Fig. 3. The distribution of the change of the band gap AE_gefof GaN nanowire (NW) due to the presence
of the Ing2GagsN quantum dot (QD), along free surface of NW. (a) cylindrical QD, (b) hemispherical QD, and
(c) conical QD. The parameters for calculations: the volume of the base of QD V = 144w nm3;

NW radius and the radius of QD base are 10 nm and 6 nm, respectively; the Poisson ratio of GaN
v = 0.234 [22]; the misfit parameter of Ing,GagsN quantum dot in GaN matrix is €* = 0.021
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The changes of band gaps GaN nanowire depend on the QD misfit parameter £* and
shape as shown in Fig. 4. In addition, the band gap depends on the ratio of the sizes of
the quantum dot and nanowire.

AE[ (meV)

N W

100! InN
AlozGaoiNf In,,Ga, N

)

0.2 004 006 008 01

~0.1 -008 -0.06 -0.04 -0.02

-100 |
1= [

_ _ - 200F
2- hemispherical QD [

3-cylindrical QD '300}

-400 |

Fig. 4. The dependence of maximum band gap change under lateral surface of the GaN nanowire (NW)
containing quantum dot (QD) on misfit parameter *. The parameters for calculations: the volume of QD
V = 1441 nm3; the radius of the QD base and NW radius are 6 and 10 nm, respectively; the Poisson ratio

v = 0.234 [22]. The arrows indicate QDs corresponding to the selected misfit parameters

Discussions and Conclusions

In this study, using the found analytical formulas for the elastic fields of cylindrical,
hemispherical, and conical inclusions simulating QDs and located along the
semiconductor NW symmetry axis, the maps of the elastic dilations are depicted and the
regions of their extremes near the NW free surface are identified. Calculations are
performed within the framework of the isotropic linear theory of elasticity. For GaN
nanowires containing axisymmetric QDs of varying shapes and compositions, the changes
of the band gap in the NW regions of elastic dilation extremes are calculated. The analysis
demonstrates that the contribution of the free surface to the elastic fields, as well as the
band structure, depend on the QD shape, material and size. The band gap near the free
surface of the semiconductor nanowire changes most strongly for a cylindrical QD (Fig. 4).
The change of semiconductor NW band gap depends linearly on the positive misfit
parameter (¢* > 0) between QD and NW, for the case of £* < 0, the dependence is
nonlinear (Fig. 4). It is shown that the band gap of GaN nanowires can locally vary by
approximately 10% of the tabulated value.

The response of the band gap of a semiconductor nanowire to the elastic field of a
quantum dot embedded in this wire allows one to band gap engineering of the nanowire
by varying the shape, material, and size of the quantum dot.
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