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ABSTRACT 
Zinc-doped titanium dioxide nanotubes were successfully synthesized, characterized, and tested as 
materials for energy conversion in dye-sensitized solar cells. The TiO2 nanotubes were grown through 
single-face anodization at a constant direct current voltage of 50 V and room temperature on titanium 
sheets with a thickness of 0.25 mm and purity of 99.7 %. The electrolyte was composed of ethylene 
glycol, ammonium fluoride (0.3 % wt. NH4F), and deionized water (2 % v/v H2O). The titania nanotubes 
were doped with Zn using Zn(NO3)2 as the dopant source. The molar ratios of zinc nitrate were varied 
from 1, 3, 5, and 7 mM. X-ray diffraction, scanning electron microscopy, and ultraviolet-visible spectroscopy 
(techniques were employed to characterize the Zn-doped titanium dioxide nanotubes. The samples were 
then tested in dye-sensitized solar cells, and their photoelectric conversion efficiencies were calculated.  
As a result, amorphous-TiO2 structure was transformed into the crystalline anatase phase after annealing. 
The best performance was observed for the 5 mM zinc nitrate sample, with a photoelectric conversion 
efficiency of 4.96 % and an energy band gap of 3.18 eV. The findings of this research provide valuable 
insights for ongoing and future studies in the development of renewable energy. 
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Introduction 
It was in 1991, when O’Regan and Gratzel [1–3] made their first dye-sensitized solar 
cells (DSSCs). Since then, there has been huge growth in research on DSSCs. This huge 
growth can be accounted for due to the following reasons: they are cheap to produce, 
easy to fabricate, are a source of renewable energy, are environmentally friendly and 
have high power conversion efficiency [4–10]. Titanium dioxide or titania (TiO2) 
nanotubes can be used in DSSCs to improve the photocatalytic performance and resolve 
the issue of charge recombination [11–14]. However, one challenge encountered with 
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titania is the large band gap energy of about 3.2 eV. This large band gap restricts solar 
energy absorption mostly in the UV region. Many reports suggest that this problem can 
be solved by doping titania with foreign elements. Examples of elements that have 
been used as dopant in titania include Fe, N, Cu, and Al [15–19]. 

A.F.Robledo et al.[6], P.Ramos et al. [20] and A. Javed et al. [21] used ZnO 
nanostructures in DSSCs. Composite nanofibers of ZnO-TiO2 in DSSCs was reported by 
C. Qiqi et al. in 2022 [22]. A 1:2 molar ratio of ZnO-TiO2 was utilized and obtained 
photoelectric conversion efficiency (PCE) of 3.66 %. There is great room for 
improvement on this result by doping titania nanotubes (TNT) using zinc nitrate, 
Zn(NO3)2, as a source of the dopant element Zn. This research work reports the 
fabrication and characterization of Zn-doped TNT for DSSCs. The samples were 
prepared at the molar ratios of zinc nitrate: 1, 3, 5 and 7 mM. The PCE of each sample 
will be tested in DSSCs. 

 
Materials and Methods 
Direct current (DC) anodization technique was used to develop TNT on titanium sheet 
from Sigma Aldrich. This process was carried out at a constant voltage supplyof 50 V for 
2 h at room temperature. The thickness of the each titanium sheet or foil was 0.25 mm 
thickness and their purity was 99.7 %. The sheets were polished with abrasive paper 
and degreased by ultrasonic method in isopropanol, deionized water and ethanol. The 
electrolyte used for the anodization was composed of the following: 
ethyleneglycol (EG), ammoniumfluoride (0.3 wt. % NH4F) and deionized water 
(2 vol. % D.I. H2O). The molar concentrations of zinc nitrate was varied sequentially -1, 
3, 5 and 7 mM. To ensure that the electrolyte was homogenous, we kept the mixture for 
5 h prior to anodization. The array for the anodization consist of two electrodes – a 
copper electrode and a platinum counter electrode, as seen in Fig. 1. With this set up, 
the electrolyte can only be in contact with one face of the titanium sheet. 

 

 
 

Fig. 1. The schematic diagram of a single-face anodization process 

 
Analysis of the samples was performed before calcination and after anealingin an 

oven at 450 ºC. The following techniques were used to characterize the samples: X-ray 
diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet-visible 
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spectroscopy (UV-VIS). After that, the samples were tested in DSSCs. Totest in DSSCs, 
the titania nanotubes photoelectrodes were immersed for 24 h at room temperature in 
0.5 mM solution of N719 dye and acetonitrile/tert-butanol in a 1:1 mixture. To form the 
counter electrode, platinum solution (H2PtCl6) was dropped on a transparent conducting 
oxide glass (TCO). After heating the TCO at 80 ºC for 30 min, the platinium counter 
electrode was ready. A sandwich assembly of the Pt electrode and the titania nanotube 
photoelectrode was incorporated into the DSSCs. The current-voltage (IV) characteristic 
was then analyzed. The following parameters are fundamental in evaluating the 
photovoltaic properties of the DSSCs: short-circuit current density (Jsc), open-circuit 
voltage (Voc), fill factor (FF) and the photoelectric conversion efficiency PCE (η). These 
parameters are related via the equations that follows [23,24]: 
𝐹𝐹 =

𝑉𝑚𝐼𝑚

𝑉𝑂𝐶𝐼𝑆𝐶
,              (1) 

𝜂 =
𝑉𝑚𝐼𝑚

𝑃𝑖𝑛
=

𝑉𝑂𝐶𝐼𝑆𝐶𝐹𝐹

𝑃𝑖𝑛
,             (2) 

where Im and Vm are the current and voltage, respectively, at the optimal operating 
point. Their product gives the maximum output power Pm. The power of the incident 
light is denoted as Pin. 

 
Results and Discussion 
XRD analysis 

XRD patterns of the zinc-doped titania nanotubes samples before annealing are 
displayed in Fig. 2. In Fig. 2, we can see the peaks typical to titanium metal. It is also 
worth noting that the titania were still in the amorphase phase due to the absence of 
the anatase phase. On the other hand, Fig. 3 displays XRD patterns after calcinating the 
samples at 450 °C. It is obvious to see the crystalline anatase phase of TiO2 which are 
labelled A. The diffraction peaks for the anatase phase occur at the scattering angles of 
25.3, 48.8, 54.2, and 55.1°. These results align perfectly with the works of 
Hailei Li et al. [25], and Shih-Yu Ho et al. [26]. 
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Fig. 2. XRD patterns of Zn-doped TNT before 

annealing: (a) 1 mM, (b) 3 mM,  
(c) 5 mM, and (d) 7 mM 

Fig. 3. XRD patterns of Zn-doped TNT after 
annealing at 450 ºC: (a) 1 mM, (b) 3 mM,  

(c) 5 mM and (d) 7 mM 
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SEM analysis 

The calcinated samples were studied using scanning electron microscopy (SEM).  
The results presented in Fig. 4 brings to light the changes in the surface morphology of 
the Zn-doped TNT. The fine structure of the nanotubes gets better with increase in zinc 
nitrate concentration. However, after 5 mM, the order liness of the nanotube array is 
heavily disrupted, as seen with the 7 mM sample. A similar result was obtained by 
X. Chen et al. [27], when varying the concentrations of HCl. 
 

  
  

  
 

Fig. 4. SEM images of Zn-doped TNT after annealing at 450 ºC: (a) 1 mM, (b) 3 mM, (c) 5 mM and (d) 7 mM 
 

UV-visible spectroscopy analysis 

The ultraviolet-visible spectrums of the annealed samples are presented in Fig. 5.  
The sample with a zinc nitrate concentration of 5 mM had the greatest cut off 
wavelength (λc) of 390 nm. λc increased with concentration until 5 mM, and decreased 
there after at the higher concentration of 7 mM. We can attribute this to the disorderly 
array of the nanotubes demonstrated in SEM images of Fig. 4(d). A large λc implies a 
smaller energy band gap (Eg), as demonstrated in Table 1 by Eq. (3) [28–30]: 
𝐸𝑔 =

ℎ𝑐

𝜆𝐶
=

1240

𝜆𝐶
,             (3) 

where h is the Planck constant (6.626 × 10-34 Js or 4.14 × 10-15 eVs) and c is the speed of 
light in vacuum (3.00 × 108 m/s). 
 

Table 1.Energy band gapfrom UV-VIS for different concentrations of Zn-doped TNT after annealing at 450 ºC 
Samples 1 mM 3 mM 5 mM 7 mM 
λc, nm 379 388 390 384 
Eg, eV 3.27 3.20 3.18 3.23 

(a) 

(c) 
(d) 

(b) 
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Fig. 5. Current-voltage (IV) сharacteriztic сurves ofZn-doped TNT after annealing at 450 ºC: 
(a) 1 mM, (b) 3 mM, (c) 5 mM and (d) 7 mM 

 
IV characteristic and photoelectric performance 

Figure 5 and Table 2 both reveal that as zinc nitrate concentration increase, the cell 
efficiency and photocatalytic performance also increase. One explanation to this is that 
the dopant element Zn serves as charge traps and helps to reduce charge carrierre 
combination. As more zinc ions replace the titanium ions in the crystal lattice, more 
charge traps are created. Another reason is that the introduced Zn aid in reducing the 
band gap energy by forming intermediate energy levels. As a result, the photon 
absorption of the DSSCs is shifted from the UV region to the Visible light region. This 
conclusion is supported by the work of Udom T. et al [31]. The 5 mM zinc nitrate sample 
had the highest PCE of 4.96 %. Because doping reduces the number of trapping states, 
resulting in a reduction of charge recombination. The efficiency of dye sensitized solar 
cell of doped Zn-TiO2 nanotubes obviously declined, which may be due to the formation 
of recombination centers of photogenerated carriers by the excessive impurity 
atoms [32]. The cell efficiency at a higher concentration was lower due to a highly 
distorted and disorganized nanotube array as observed in the SEM images in Fig. 4(d). 
As a consequence, the charge carrierre combination will be greater, resulting in lower 
PCE and photocatalytic performance. 
 
Table 2.Photoelectric performance of Zn-doped TNT after annealing at 450 ºC 

Samples Jsc, mA/cm2 Voc, V FF η, % 
1 mM 8.87 0.68 0.53 3.42 
3 mM 10.94 0.64 0.49 3.52 
5 mM 12.35 0.62 0.64 4.96 
7 mM 10.95 0.61 0.62 3.85 
 

Conclusions 
Zinc-doped TiO2 nanotubes were synthesized byDC anodization at 50 V, and their 
photocatalytic performance were testedin dye-sensitized solar cells (DSSCs). The 
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electrolyte was composed of ethyleneglycol (EG), ammoniumfluoride (0.3 % wt NH4F), 
and deionized water (2 % V H2O). zinc nitrate was used as the source of the dopant 
element Zn, and the molar concentrations of zinc nitrate was varied as follows: 1, 3, 5 
and 7 mM. The Zn-doped TNT were characterized using several techniques. XRD 
patterns revealed the transformation of amorphous TiO2 into the anatase phase after 
calcination at 450 ºC.The surface morphology and array of the nanotubes were studied 
using SEM. The nanotubes for the 7 mM sample show highly distorted arrangement. The 
energy band gaps were determined from the UV-VIS results. The lowest band gap 
energy of 3.18 eV was obtained for the 5 mM sample. This value can be used to account 
for the optimal photocatalytic performance of the 5 mM sample when tested in DSSCs. 
It had the highest PCE of 4.96 %. The results of this research provided significant 
guidelines for ongoing and future research in the development of sustainable energy. 
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