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ABSTRACT  
This current study examines how carrier density and moisture sources cause deformation in an isotropic 
photothermoelastic moisture plate. We develop simplified two-dimensional equations describing the 
interaction of heat, moisture, and charge carriers within the material. These equations are expressed in a 
dimensionless form and solved analytically using Laplace and Fourier transformations to obtain the main 
field quantities—displacement, stress, temperature, carrier density, and moisture distribution. The 
theoretical results are validated for silicon material and illustrated graphically. The analysis demonstrates 
that both carrier density and moisture significantly affect the stress, temperature, and carrier concentration 
within the plate. Moisture tends to stabilize stress variations and reduce temperature fluctuations, while 
relaxation times strongly influence oscillation patterns in all field quantities. These results underscore the 
integrated role of thermal, moisture, and photoelastic effects in shaping the mechanical behavior of 
semiconducting materials. The proposed model aids in analyzing coupled thermoelastic, moisture, and 
carrier effects in semiconductors, offering improved prediction of transient responses essential for 
enhancing thermal stability and reliability in electronic and photonic devices. 
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Introduction 
Advances in modern technology have considerably expanded the use of semiconducting 
materials in diverse engineering and applied physics applications. The study of wave 
propagation in semiconducting media is of both academic and technological significance 
owing to its relevance to optoelectronic and thermomechanical processes. In recent 
years, the photothermal excitation of short elastic pulses has become a central topic of 
research, finding applications in photoacoustic microscopy, thermal wave imaging, 
thermoelastic parameter determination, non-destructive device evaluation, laser drilling 
monitoring, and laser-induced annealing and melting phenomena in semiconductors. 
When a laser beam irradiates a semiconductor surface, part of the absorbed energy 
excites electrons to higher energy states. The recombination of electron–hole pairs 
through non-radiative transitions produces photoexcited free carriers that influence the 
local thermal and elastic fields. Consequently, photothermal (PT) and photoacoustic (PA) 
techniques have emerged as powerful diagnostic tools for investigating the internal 
dynamics of semiconductor materials. 

http://dx.doi.org/10.18149/MPM.5362025_11
https://orcid.org/0000-0002-1572-2108
https://orcid.org/0000-0003-3999-1780
https://orcid.org/0009-0000-1827-9335


146 R. Kumar, N. Sharma, V. Rani 

Over the last few decades, PA and PT methods have evolved into highly sensitive 
and versatile techniques for characterizing semiconductors and microelectronic 
structures. These methods exhibit excellent sensitivity to the kinetics of photoexcited 
carriers and have been employed for precise analysis of carrier transport, recombination, 
and diffusion mechanisms (Mandelis [1]; Almond and Patel [2]; Nikolic and Todorović [3]; 
Mandelis and Michaelian [4]). In most semiconductor systems, an absorbed modulated 
laser beam generates electron-hole pairs, producing carrier-diffusion or plasma waves 
that significantly contribute to the PT and PA responses. These plasma waves induce 
periodic thermal and elastic disturbances, resulting in coupled thermoelastic and plasma 
wave propagation. The subsequent deformation of the crystal lattice alters the potential 
profiles of the conduction and valence bands, producing complex photo-induced 
mechanical behavior. Todorović [5–7] proposed theoretical models that linked carrier 
recombination and transport phenomena with the deformation and mechanical response 
of semiconductor media. 

Considerable theoretical developments have since been made in the field of 
generalized thermoelasticity and its extensions. Sharma [8] examined boundary value 
problems in generalized thermodiffusive elastic media, while Sharma et al. [9] obtained 
the fundamental solution for electro-microstretch viscoelastic solids and explored wave 
motion. Othman et al. [10] analyzed magneto-thermoelastic behavior in perfectly 
conducting half-spaces subjected to magnetic and thermal fields, and Marin et al. [11] 
extended Saint-Venant’s principle to micropolar thermoelastic diffusion models. Zenkour 
and Abbas [12] utilized the Green–Naghdi model to investigate thermal shock in fiber-
reinforced anisotropic media under magnetic influence. Lotfy [13] applied a two-
temperature model to study magneto-thermoelastic interactions, while Sharma and 
Sharma [14] and Abbas et al. [15] extended these formulations to bio-heat transfer and 
microstretch elastic media. 

Further research integrated electromagnetic, fractional, and relaxation phenomena 
into photothermal and magneto-thermoelastic analyses. Hobiny and Abbas [16,17] 
employed the coupled thermoelastic–plasma wave theory using the Green–Naghdi 
framework and its fractional-order extensions. Marin et al. [18] developed 
porothermoelastic models using fractional calculus and thermal relaxation parameters. 
Lotfy et al. [19] and Abbas [20,21] studied the combined effects of electromagnetic, 
thermal, and photonic fields on semiconductor response to laser-induced heating. Recent 
studies by Sharma and Kumar [22,23], Lotfy et al. [24], and Mahdy et al. [25] examined 
photothermoelastic deformations caused by inclined loads, ramp-type heating, Hall 
currents, and time-fractional heat conduction effects. 

Sharma and Khator [26,27] explored renewable energy challenges and microgrid 
planning for prosumer markets, while several studies advanced semiconductor 
thermoelastic modeling: Lotfy [28] studied Hall current and microtemperature effects in 
magneto-thermoelastic semiconductors; Hobiny et al. [29] examined wave propagation 
using the hyperbolic two-temperature model; El-Sapa et al. [30] applied a nonlocal 
variable-conductivity approach at the nanoscale; Raddadi et al. [31] modeled 
photoacoustic wave generation via carrier diffusion; and Sharma et al. [32] investigated 
micropolar thermoviscoelasticity incorporating nonlocal and hyperbolic two-temperature 
effects under the MGT framework. 
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The coupling of heat and moisture diffusion known as hygro-thermoelasticity has 
also received significant attention due to its relevance in porous and hygroscopic 
materials such as composites, foams, biotissues, and concrete. Foundational studies by 
Szekeres [33,34] and Szekeres and Engelbrecht [35] established analogies between heat 
and moisture transfer, later expanded by Sih et al. [36] to analyze coupled hygro-
thermoelastic behavior. More recently, Alhashash et al. [37] and El-Sapa et al. [38] 
developed mathematical–physical models describing the effects of moisture diffusivity 
in semiconducting media under two-temperature and nonlocal frameworks. 
Lotfy et al. [39] and Alshehri and Lotfy [40] investigated the interaction between 
photoacoustic waves and moisture diffusivity in hydro-poroelastic semiconductors.  

Kumar and Devi [41] and Kumar et al. [42,43] investigated thick circular plates 
through modified couple stress and photothermoelastic frameworks, considering factors 
such as porosity, phase lag, and fractional behavior. Abbas et al. [44,45] and 
Lotfy et al. [46] explored thermoelastic half-spaces incorporating diffusion, voids, and 
Hall current influences. Alzahrani and Abbas [47] and Sharma et al. [48] analyzed 
semiconductor half-spaces exhibiting nonlocal and phase-lag thermoelastic responses. 

The novelty of the present work lies in the combined analysis of carrier density and 
moisture diffusivity effects on the deformation of an isotropic photothermoelastic 
moisture (IPTM) plate, an aspect that has not been extensively reported in prior literature. 
Unlike earlier studies that focused separately on thermal or photothermal interactions, 
the current formulation incorporates simultaneous contributions from carrier generation, 
moisture transport, and relaxation mechanisms. The governing field equations are 
derived using generalized thermoelasticity and diffusion theories, introducing suitable 
non-dimensional parameters and potential functions to simplify the coupled system. The 
equations are solved analytically using Laplace and Fourier transform techniques to 
obtain expressions for temperature, carrier density, moisture concentration, and normal 
stress. The results are numerically inverted to retrieve time-domain responses, and 
graphical analyses are presented to demonstrate the effects of carrier density, moisture 
diffusivity, and relaxation times on the deformation characteristics of the IPTM plate, 
which offers novel perspectives on the multiphysical coupling mechanisms in 
semiconductor materials. 
 
Basic equations 
Following the formulations of Todorovic [5–7], Szekeres [33,34], and Alenazi et al. [49], 
the constitutive relations and field equations are developed for a homogeneous, isotropic, 
and linearly elastic photothermoelastic material with moisture. The model neglects body 
forces, carrier photogeneration, and internal heat or moisture sources, while 
incorporating finite relaxation effects for heat, carrier, and moisture diffusion. 
𝑡𝑖𝑗 = 2𝜇𝑒𝑖𝑗 + 𝛿𝑖𝑗(𝜆𝑒𝑘𝑘 − 𝛾𝑡𝑇 − 𝛾𝑛𝑁 − 𝛾𝑚𝑀),     (1) 

(2𝜇𝑒𝑖𝑗,𝑗 + 𝜆𝑒𝑘𝑘,𝑖 − 𝛾𝑡𝑇,𝑖 − 𝛾𝑛𝑁,𝑖 − 𝛾𝑚𝑀,𝑖) + 𝐹𝑖 = 𝜌
𝜕2𝑢𝑖

𝜕𝑡2
 ,     (2) 

𝐷𝑒𝑁,𝑖𝑖 −
𝜕𝑁

𝜕𝑡
−
𝑁

𝜏
+ 𝛿

𝑇

𝜏
= 0,     (3) 

𝜌𝐶𝑒(𝐷𝑡𝑇,𝑖𝑖 +𝐷𝑡
𝑚𝑀,𝑖𝑖) +

𝐸𝑔𝑁

𝜏
= (1 + 𝜏𝑜

𝜕

𝜕𝑡
) [𝜌𝐶𝑒𝑇̇ + 𝛾𝑡𝑇𝑜𝑒̇𝑘𝑘],     (4) 
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𝐾𝑚(𝐷𝑚𝑀,𝑖𝑖 +𝐷𝑚
𝑡 𝑇,𝑖𝑖) +

𝐸𝑔𝑁

𝜏
= (1 + 𝜏𝑜

𝜕

𝜕𝑡
) [𝐾𝑚𝑀̇ + 𝛾𝑚𝐷𝑚𝑀𝑜𝑒̇𝑘𝑘].       (5) 

where 𝑡𝑖𝑗 are components of stress tensor; 𝑒𝑖𝑗 are components of strain tensor, 𝜆 end 𝜇  
are Lame’s constants, 𝛿𝑖𝑗 is kronecker delta, 𝛾𝑡 = (3𝜆 + 2𝜇)𝛼𝑡 – 𝛼𝑡 are linear thermal 
expansion coefficients, 𝛾𝑛 = (3𝜆 + 2𝜇)𝛼𝑛 – 𝛼𝑛 are electronic deformation coefficients, 
𝛾𝑚 = (3𝜆 + 2𝜇)𝛼𝑚 – 𝛼𝑚 are moisture expansion coefficients, 𝐹𝑖  are the components of 
body force per unit volume, 𝑢𝑖 are components of displacement, 𝜌 is the medium density, 
𝐷𝑒 are the coefficients of carrier diffusion; N = n-𝑛0, 𝑛0 are the carrier concentration at 
equilibrium, 𝜏 is the photogenerated carrier lifetime,  𝛿 = 𝜕𝑛0

𝜕𝑇
 is thermal activation 

coupling parameter, T is the temperature distribution, 𝐶𝑒 is the specific heat, 𝐷𝑡 = 𝐾 𝜌𝐶𝑒⁄  
is temperature diffusivity, where 𝐾 is a coefficient of thermal conductivity, 𝐷𝑡𝑚 is coupled 
moisture diffusivity, 𝐸𝑔 is the semiconductor energy gap, 𝜏𝑜is the thermal relaxation 
time, 𝜏𝑜 is the moisture relaxation time,  𝑇0 is the reference temperature, 𝐾𝑚 is moisture 
diffusion constant, 𝐷𝑚 is moisture diffusivity, 𝐷𝑚𝑡  is coupled thermal diffusivity, 𝑀0 is the 
reference moisture. Partial derivatives and time derivatives are denoted by the symbols 
"," and "." respectively. 

 
Formulation of the problem and model assumptions 
We investigate a homogeneous, isotropic, thermally conducting, infinite 
photothermoelastic moisture Cartesian plate with finite thickness 2d having an initial 
uniform temperature 𝑇𝑜. The origin of the coordinate system may be any point on the 
middle plane, and the middle plane of the plate coincides with the 𝑥1𝑥2-plane, 
consequently −𝑑 ≤ 𝑥3 ≤ 𝑑 and −∞ < 𝑥1, 𝑥2 < ∞. The boundary surface of the plate is 
subjected to carrier density source and moisture source. We limit our analysis to the 
𝑥1𝑥3-plane, which we assume the plane of incident, so that the physical field elements 
vary with 𝑥1, 𝑥3, 𝑡. Consequently, displacement components, temperature distribution, 
carrier density distribution and moisture distribution are provided by: 
𝑢⃗ = (𝑢1(𝑥1, 𝑥3, 𝑡), 0, 𝑢3(𝑥1, 𝑥3, 𝑡)), 𝑇 = 𝑇(𝑥1, 𝑥3, 𝑡), 𝑁 = 𝑁(𝑥1, 𝑥3, 𝑡),𝑀 = 𝑀(𝑥1, 𝑥3, 𝑡).     (6) 

The governing Eqs. (2)–(5) and constitutive relation (1) for IPTM plate utilizing 
Eq. (6), adopt the following form: 
(𝜆 + 𝜇)

𝜕𝑒

𝜕𝑥1
+ 𝜇∆𝑢1 − 𝛾𝑡

𝜕𝑇

𝜕𝑥1
− 𝛾𝑛

𝜕𝑁

𝜕𝑥1
− 𝛾𝑚

𝜕𝑀

𝜕𝑥1
= 𝜌

𝜕2𝑢1

𝜕𝑡2
 ,         (7) 

(𝜆 + 𝜇)
𝜕𝑒

𝜕𝑥3
+ 𝜇∆𝑢3 − 𝛾𝑡

𝜕𝑇

𝜕𝑥3
− 𝛾𝑛

𝜕𝑁

𝜕𝑥3
− 𝛾𝑚

𝜕𝑀

𝜕𝑥3
= 𝜌

𝜕2𝑢3

𝜕𝑡2
,         (8) 

𝐷𝑒∆𝑁 −
𝜕𝑁

𝜕𝑡
−
𝑁

𝜏
+ 𝛿

𝑇

𝜏
= 0,             (9) 

𝜌𝐶𝑒[𝐷𝑡∆𝑇 + 𝐷𝑡
𝑚∆𝑀] +

𝐸𝑔𝑁

𝜏
= (1 + 𝜏𝑜

𝜕

𝜕𝑡
) [𝜌𝐶𝑒

𝜕𝑇

𝜕𝑡
+ 𝛾𝑡𝑇𝑜

𝜕𝑒

𝜕𝑡
],      (10) 

𝐾𝑚[𝐷𝑚∆𝑀 + 𝐷𝑚
𝑡 ∆𝑇] +

𝐸𝑔𝑁

𝜏
= (1 + 𝜏𝑜

𝜕

𝜕𝑡
) [𝐾𝑚

𝜕𝑀

𝜕𝑡
+ 𝛾𝑚𝐷𝑚𝑀𝑜

𝜕𝑒

𝜕𝑡
],     (11) 

𝑡11 = (𝜆 + 2𝜇)
𝜕𝑢1

𝜕𝑥1
+ 𝜆

𝜕𝑢3

𝜕𝑥3
− 𝛾𝑡𝑇 − 𝛾𝑛𝑁 − 𝛾𝑚𝑀,        (12) 

𝑡33 = (𝜆 + 2𝜇)
𝜕𝑢3

𝜕𝑥3
+ 𝜆

𝜕𝑢1

𝜕𝑥1
− 𝛾𝑡𝑇 − 𝛾𝑛𝑁 − 𝛾𝑚𝑀,        (13) 

𝑡31 = 𝜇 (
𝜕𝑢1

𝜕𝑥3
+
𝜕𝑢3

𝜕𝑥1
),            (14) 

where 𝑒 = 𝜕𝑢1

𝜕𝑥1
+
𝜕𝑢3

𝜕𝑥3
  and ∆ = 𝜕2

𝜕𝑥1
2 +

𝜕2

𝜕𝑥3
2  . 

The model is formulated under the following physical and mathematical assumptions: 
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The plate is homogeneous, isotropic, and linearly elastic, with uniform mechanical, thermal, 
and electronic properties. All field variables temperature, carrier density, and moisture 
concentration are considered small perturbations around a uniform equilibrium state, 
allowing the governing equations to be linearized. Finite relaxation times are incorporated 
for heat, carrier, and moisture fluxes to represent finite-speed propagation and realistic 
transient behavior. Body forces, carrier photogeneration, and internal heat or moisture 
sources within the medium are neglected. 

The problem is treated as two-dimensional, assuming no variation along the  
𝑥2-axis, and all field variables are continuous and differentiable, ensuring the 
applicability of Laplace and Fourier transforms. The plate is initially stress-free and 
thermally uniform, and its bounding surfaces are subjected to prescribed, time-dependent 
carrier-density and moisture loadings. 

The dimensionless quantities are defined in the following way: 
(𝑥1

′ , 𝑥3
′ , 𝑢1

′ , 𝑢3
′ ) = 𝜂1𝐶𝑜(𝑥1, 𝑥3, 𝑢1, 𝑢3), (𝑡11

′ , 𝑡33
′ , 𝑡31

′ ) =
1

𝜆+2𝜇
(𝑡11, 𝑡33, 𝑡31), 

(𝑡′, 𝜏𝑜
′ , 𝜏𝑜′) = 𝜂1𝐶𝑜

2(𝑡, 𝜏𝑜 , 𝜏
𝑜),   𝑇′ =

𝛾𝑡

𝜆+2𝜇
𝑇,         (15) 

𝑁′ =
𝛾𝑛

𝜆+2𝜇
𝑁,   𝑒′ = 𝑒 ,   𝑀′ = 𝑀,  

where 𝜂1 =
𝜌𝐶𝑒

𝐾
, 𝐶𝑜

2 =
𝜆+2𝜇

𝜌
. 

Using the dimensionless quantities provided by Eq. (15) in Eqs. (7)–(14) and, after 
prime deprivation, we obtain: 
𝑓11

𝜕𝑒

𝜕𝑥1
+ 𝑓12∆𝑢1 −

𝜕𝑇

𝜕𝑥1
−

𝜕𝑁

𝜕𝑥1
− 𝑓13

𝜕𝑀

𝜕𝑥1
=

𝜕2𝑢1

𝜕𝑡2
,        (16) 

𝑓11
𝜕𝑒

𝜕𝑥3
+ 𝑓12∆𝑢3 −

𝜕𝑇

𝜕𝑥3
−

𝜕𝑁

𝜕𝑥3
− 𝑓13

𝜕𝑀

𝜕𝑥3
=

𝜕2𝑢3

𝜕𝑡2
,        (17) 

∆𝑁 − 𝑓14
𝜕𝑁

𝜕𝑇
− 𝑓15𝑁 + 𝑓16𝑇 = 0,          (18) 

∆𝑇 + 𝑓17∆𝑀 + 𝑓18𝑁 = (1 + 𝜏𝑜
𝜕

𝜕𝑡
) [𝑓19

𝜕𝑇

𝜕𝑡
+ 𝑓20

𝜕𝑒

𝜕𝑡
],       (19) 

∆𝑀 + 𝑓21∆𝑇 + 𝑓22𝑁 = (1 + 𝜏𝑜
𝜕

𝜕𝑡
) [𝑓23

𝜕𝑀

𝜕𝑡
+ 𝑓24

𝜕𝑒

𝜕𝑡
],       (20) 

𝑡11 =
𝜕𝑢1

𝜕𝑥1
+ 𝑓25

𝜕𝑢3

𝜕𝑥3
− 𝑇 − 𝑁 − 𝑓13𝑀 ,         (21) 

𝑡33 =
𝜕𝑢3

𝜕𝑥3
+ 𝑓25

𝜕𝑢1

𝜕𝑥1
− 𝑇 − 𝑁 − 𝑓13𝑀,         (22) 

𝑡31 = 𝑓12 (
𝜕𝑢1

𝜕𝑥3
+
𝜕𝑢3

𝜕𝑥1
),           (23) 

where 𝑓11 =
𝜆+𝜇

𝜌𝐶𝑜
2  , 𝑓12 =

𝜇

𝜌𝐶𝑜
2  , 𝑓13 =

𝛾𝑚

𝜌𝐶𝑜
2  , 𝑓14 =

1

𝜂1𝐷𝑒
 , 𝑓15 =

1

𝐷𝑒𝜂1
2𝐶𝑜

2𝜏
 ,  𝑓16 =

𝛿𝛾𝑛

𝐷𝑒𝜏𝛾𝑡𝜂1
2𝐶𝑜

2, 

𝑓17 =
𝐷𝑡
𝑚𝛾𝑡

𝐷𝑡(𝜆+2𝜇)
 ,   𝑓18 =

𝐸𝑔𝛾𝑡

𝜏𝛾𝑛𝜌𝐶𝑒𝐷𝑡𝜂1
2𝐶𝑜

2  ,   𝑓19 =
1

𝐷𝑡𝜂1
 ,   𝑓20 =

𝛾𝑡
2𝑇𝑜

𝜌𝐶𝑒𝐷𝑡𝜂1(𝜆+2𝜇)
 , 𝑓21 =

𝐷𝑚
𝑡 (𝜆+2𝜇)

𝐷𝑚𝛾𝑡
 , 

𝑓22 =
𝐸𝑔(𝜆+2𝜇)

𝜏𝛾𝑛𝐾𝑚𝐷𝑚𝜂1
2𝐶𝑜

2  ,   𝑓23 =
1

𝐷𝑚𝜂1
 ,   𝑓24 =

𝛾𝑚𝑀𝑜

𝐾𝑚𝜂1
 ,   𝑓25 =

𝜆

𝜆+2𝜇
. 

According to Helmholtz's decomposition, 𝑢1 and 𝑢3 have the following non-
dimensional connections to the potential functions 𝛷 and 𝛹: 
𝑢1 =

𝜕𝛷

𝜕𝑥1
−

𝜕Ψ

𝜕𝑥3
 , 𝑢3 =

𝜕𝛷

𝜕𝑥3
+

𝜕Ψ

𝜕𝑥1
.          (24) 

With the assistance of Eq. (24), Eqs. (16)–(17) provide: 
(∆ −

𝜕2

𝜕𝑡2
)𝛷 − 𝑇 − 𝑁 − 𝑓13𝑀 = 0,          (25) 

∆Ψ −
1

𝑓12

𝜕2Ψ

𝜕𝑡2
= 0.            (26) 
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Define Laplace and Fourier Transform as: 
𝑓(𝑥1, 𝑥3, 𝔰) = ∫ 𝑓(𝑥1, 𝑥3, 𝑡)𝑒

−𝔰𝑡𝑑𝑡
∞

0
,          (27) 

𝑓(𝜉, 𝑥3, 𝔰) = ∫ 𝑓(𝑥1, 𝑥3, 𝔰)𝑒
𝔦𝜉𝑥1𝑑𝑥1

∞

−∞
,         (28) 

where 𝔰 is Laplace transform parameter and 𝜉  is Fourier transform parameter. 
After executing Laplace and Fourier transforms provided by Eqs. (27)–(28) to 

Eqs. (25), (18)–(20) and (26), we obtain the following: 

(−𝜉2 +
𝑑2

𝑑𝑥3
2 − 𝔰

2) 𝛷̃ − 𝑇̃ − 𝑁̃ − 𝑓13𝑀̃ = 0,         (29) 

(−𝜉2 +
𝑑2

𝑑𝑥3
2) 𝑁̃ − 𝑓14𝔰𝑁̃ − 𝑓15𝑁̃ + 𝑓16𝑇̃ = 0,        (30) 

−𝜉2𝑇̃ +
𝑑2𝑇̃

𝑑𝑥3
2 + 𝑓17 (−𝜉

2𝑀̃ +
𝑑2𝑀̃

𝑑𝑥3
2) + 𝑓18𝑁̃ = (1 + 𝜏𝑜𝔰) [𝑓19𝔰𝑇̃ + 𝑓20𝔰 (−𝜉

2 +
𝑑2

𝑑𝑥3
2) 𝛷̃],   (31) 

−𝜉2𝑀̃ +
𝑑2𝑀̃

𝑑𝑥3
2 + 𝑓21 (−𝜉

2𝑇̃ +
𝑑2𝑇̃

𝑑𝑥3
2) + 𝑓22𝑁̃ = (1 + 𝜏𝑜𝔰) [𝑓23𝔰𝑀̃ + 𝑓24𝔰 (−𝜉

2 +
𝑑2

𝑑𝑥3
2) 𝛷̃],   (32) 

[(−𝜉2 +
𝑑2

𝑑𝑥3
2) −

1

𝑓12
𝔰2] Ψ̃ = 0.          (33) 

Employing transforms defined by Eqs. (27)–(28) on Eqs. (24) and (21)–(23),  
the displacement and stress components are obtained as follows: 

𝑢̃1 = −𝔦𝜉𝛷̃ −
𝑑Ψ̃

𝑑𝑥3
,            (34) 

𝑢̃3 =
𝑑𝛷̃

𝑑𝑥3
− 𝔦𝜉Ψ̃,            (35) 

𝑡̃11 = −𝔦𝜉𝑢̃1 + 𝑓25
𝑑𝑢3

𝑑𝑥3
− 𝑇̃ − 𝑁̃ − 𝑓13𝑀̃,         (36) 

𝑡̃33 =
𝑑𝑢3

𝑑𝑥3
− 𝔦𝜉𝑓25𝑢̃1 − 𝑇̃ − 𝑁̃ − 𝑓13𝑀̃,         (37) 

𝑡̃31 = 𝑓12 (
𝑑𝑢1

𝑑𝑥3
− 𝔦𝜉𝑢̃3).           (38) 

Algebraic simplifications of Eqs. (29)–(32) result in: 
(ẞ1𝐷

8 + ẞ2𝐷
6 + ẞ3𝐷

4 + ẞ4𝐷
2 + ẞ5)(Փ̃, 𝑇̃, 𝑁̃, 𝑀̃) = 0,       (39) 

where 𝐷 = 𝑑

𝑑𝑥3
, ẞ1 = 𝑓17𝑓21 − 1, ẞ2 = ℜ1 +ℜ4 − ẞ1𝜉2 − ẞ1𝔰2 + 𝑓13ℜ11, 

ẞ3 = ℜ2 −ℜ1𝜉
2 −ℜ1𝔰

2 +ℜ5 −ℜ8 + 𝑓13ℜ12,  
ẞ4 = ℜ3 −ℜ2𝜉

2 −ℜ2𝔰
2 +ℜ6 −ℜ9 + 𝑓13ℜ13, 

ẞ5 = −ℜ3𝜉
2 −ℜ3𝔰

2 +ℜ7 −ℜ10 + 𝑓13ℜ14,  
and 
ℜ1 = (3 − 3𝑓17𝑓21)𝜉

2 + 𝑓19𝓇1 + 𝑓23𝓇2 + 𝑓14𝔰 + 𝑓15 − 𝑓14𝑓17𝑓21𝔰 − 𝑓15𝑓17𝑓21, 
ℜ2 = 3𝑓17𝑓21𝜉

4 − 3𝜉4 + 2𝑓15𝑓17𝑓21𝜉
2 + 2𝑓14𝑓17𝑓21𝔰𝜉

2 − 2𝑓14𝔰𝜉
2 − 2𝑓15𝜉

2 − 2𝑓19𝓇1𝜉
2 − 

−2𝑓23𝓇2𝜉
2 − 𝑓14𝑓19𝓇1𝔰 − 𝑓14𝑓23𝓇2𝔰 − 𝑓15𝑓19𝓇1 − 𝑓15𝑓23𝓇2 − 𝑓19𝑓23𝓇1𝓇2 + 𝑓16𝑓18 −

−𝑓16𝑓17𝑓22,  
ℜ3 = 𝜉

6 − 𝑓17𝑓21𝜉
6 + 𝑓15𝜉

4 + 𝑓14𝔰𝜉
4 − 𝑓14𝑓17𝑓21𝔰𝜉

4 − 𝑓15𝑓17𝑓21𝜉
4 + 𝑓19𝓇1𝜉

4 + 𝑓23𝓇2𝜉
4 + 

+𝑓14𝑓19𝓇1𝔰𝜉
2 + 𝑓14𝑓23𝓇2𝔰𝜉

2 + 𝑓15𝑓19𝓇1𝜉
2 + 𝑓15𝑓23𝓇2𝜉

2 + 𝑓16𝑓17𝑓22𝜉
2 − 𝑓16𝑓18𝜉

2 + 
+𝑓19𝑓23𝓇1𝓇2𝜉

2 + 𝑓14𝑓19𝑓23𝓇1𝓇2𝔰 + 𝑓15𝑓19𝑓23𝓇1𝓇2 − 𝑓16𝑓18𝑓23𝓇2, 
ℜ4 = 𝑓17𝑓24𝓇2 − 𝑓20𝓇1, 
ℜ5 = 3𝑓20𝓇1𝜉

2 − 3𝑓17𝑓24𝓇2𝜉
2 + 𝑓14𝑓20𝓇1𝔰 − 𝑓14𝑓17𝑓24𝓇2𝔰 + 𝑓15𝑓20𝓇1 − 𝑓15𝑓17𝑓24𝓇2 +

+𝑓20𝑓23𝓇1𝓇2, 
ℜ6 = 3𝑓17𝑓24𝓇2𝜉

4 − 3𝑓20𝓇1𝜉
4 − 2𝑓15𝑓20𝓇1𝜉

2 − 2𝑓14𝑓20𝓇1𝔰𝜉
2 − 2𝑓20𝑓23𝓇1𝓇2𝜉

2 +  
+2𝑓14𝑓17𝑓24𝓇2𝔰𝜉

2 + 2𝑓15𝑓17𝑓24𝓇2𝜉
2 − 𝑓14𝑓20𝑓23𝓇1𝓇2𝔰 − 𝑓15𝑓20𝑓23𝓇1𝓇2, 

ℜ7 = 𝑓20𝓇1𝜉
6−𝑓17𝑓24𝓇2𝜉

6 + 𝑓14𝑓20𝓇1𝔰𝜉
4 + 𝑓15𝑓20𝓇1𝜉

4 + 𝑓20𝑓23𝓇1𝓇2𝜉
4 −  

−𝑓14𝑓17𝑓24𝓇2𝔰𝜉
4 − 𝑓15𝑓17𝑓24𝓇2𝜉

4 + 𝑓14𝑓20𝑓23𝓇1𝓇2𝔰𝜉
2 + 𝑓15𝑓20𝑓23𝓇1𝓇2𝜉

2, 
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ℜ8 = 𝑓16𝑓20𝓇1 − 𝑓16𝑓17𝑓24𝓇2, 
ℜ9 = 2𝑓16𝑓17𝑓24𝓇2𝜉

2 − 2𝑓16𝑓20𝓇1𝜉
2 − 𝑓16𝑓20𝑓23𝓇1𝓇2, 

ℜ10 = 𝑓16𝑓20𝓇1𝜉
4 − 𝑓16𝑓17𝑓24𝓇2𝜉

4 + 𝑓16𝑓20𝑓23𝓇1𝓇2𝜉
2, 

ℜ11 = 𝑓20𝑓21𝓇1 − 𝑓24𝓇2, 
ℜ12 = 3𝑓24𝓇2𝜉

2 − 3𝑓20𝑓21𝓇1𝜉
2 + 𝑓14𝑓24𝓇2𝔰 − 𝑓14𝑓20𝑓21𝓇1𝔰 + 𝑓15𝑓24𝓇2 − 𝑓15𝑓20𝑓21𝓇1 +  

+𝑓19𝑓24𝓇1𝓇2, 
ℜ13 = 3𝑓20𝑓21𝓇1𝜉

4 − 3𝑓24𝓇2𝜉
4 − 2𝑓14𝑓24𝓇2𝔰𝜉

2 + 2𝑓14𝑓20𝑓21𝓇1𝔰𝜉
2 − 2𝑓15𝑓24𝓇2𝜉

2 +  
+2𝑓15𝑓20𝑓21𝓇1𝜉

2 − 2𝑓19𝑓24𝓇1𝓇2𝜉
2 − 𝑓14𝑓19𝑓24𝓇1𝓇2𝔰 − 𝑓15𝑓19𝑓24𝓇1𝓇2 − 𝑓16𝑓20𝑓22𝓇1 +  

+𝑓16𝑓18𝑓24𝓇2, 
ℜ14 = 𝑓24𝓇2𝜉

6−𝑓20𝑓21𝓇1𝜉
6 − 𝑓14𝑓20𝑓21𝓇1𝔰𝜉

4 + 𝑓14𝑓24𝓇2𝔰𝜉
4 − 𝑓15𝑓20𝑓21𝓇1𝜉

4 +  
+𝑓15𝑓24𝓇2𝜉

4 + 𝑓19𝑓24𝓇1𝓇2𝜉
4 + 𝑓14𝑓19𝑓24𝓇1𝓇2𝔰𝜉

2 + 𝑓15𝑓19𝑓24𝓇1𝓇2𝜉
2 − 𝑓16𝑓18𝑓24𝓇2𝜉

2 +  
+𝑓16𝑓20𝑓22𝓇1𝜉

2, 
with 𝓇1 = 𝔰(1 + 𝜏𝑜𝔰), 𝓇2 = 𝔰(1 + 𝜏𝑜𝔰). 

The general solution of Eq. (39) is expressed as:  
(Փ̃, 𝑇̃, 𝑁̃, 𝑀̃) = ∑ (1, 𝛼𝑖

⌔, 𝛽𝑖
⌔, 𝛾𝑖

⌔)4
𝑖=1 𝐶𝑖̅

⌔ cosh𝑚𝑖
⌔ 𝑥3,       (40) 

where 𝑚𝑖
⌔(𝑖 = 1, 2, 3, 4) are roots of ẞ1𝐷8 + ẞ2𝐷6 + ẞ3𝐷4 + ẞ4𝐷2 + ẞ5 = 0  and the 

coupling parameters 𝛼𝑖⌔, 𝛽𝑖⌔, 𝛾𝑖⌔ are given by: 

𝛼𝑖
⌔ = ∑

ℜ4𝑚𝑖
⌔6+ℜ5𝑚𝑖

⌔4+ℜ6𝑚𝑖
⌔2+ℜ7

ẞ1𝑚𝑖
⌔6+ℜ1𝑚𝑖

⌔4+ℜ2𝑚𝑖
⌔2+ℜ3

4
𝑖=1 ,          (41) 

𝛽𝑖
⌔ = ∑

ℜ8𝑚𝑖
⌔4+ℜ9𝑚𝑖

⌔2+ℜ10

ẞ1𝑚𝑖
⌔6+ℜ1𝑚𝑖

⌔4+ℜ2𝑚𝑖
⌔2+ℜ3

4
𝑖=1 ,          (42) 

𝛾𝑖
⌔ = ∑

ℜ11𝑚𝑖
⌔6+ℜ12𝑚𝑖

⌔4+ℜ13𝑚𝑖
⌔2+ℜ14

ẞ1𝑚𝑖
⌔6+ℜ1𝑚𝑖

⌔4+ℜ2𝑚𝑖
⌔2+ℜ3

4
𝑖=1 .         (43) 

Additionally, Eq. (33) has a solution provided by:  
Ψ̃ = 𝐶5̅

⌔ sinh𝑚5
⌔𝑥3,             (44) 

where 𝑚5
⌔ is a root of equation 𝐷2 + ẞ6 = 0, where ẞ6 = −(𝜉2 +

1

𝑓12
𝔰2). 

Expressions for displacement and stress components are obtained with the help of 
Eqs. (34)–(38), (40) and (44) as: 
𝑢̃1 = −𝔦𝜉 ∑ 𝐶𝑖̅

⌔ cosh𝑚𝑖
⌔𝑥3 − 𝐶5̅

⌔𝑚5
⌔ cosh𝑚5

⌔𝑥3
4
𝑖=1 ,       (45) 

𝑢̃3 = ∑ 𝐶𝑖̅
⌔𝑚𝑖

⌔ sinh𝑚𝑖
⌔𝑥3−𝔦𝜉𝐶5̅

⌔ sinh𝑚5
⌔𝑥3

4
𝑖=1 ,        (46) 

𝑡̃33 = ∑ (𝑚𝑖
⌔2 − 𝜉2𝑓25 − 𝛼𝑖

⌔ − 𝛽𝑖
⌔ − 𝑓13𝛾𝑖

⌔)𝐶𝑖̅
⌔ cosh𝑚𝑖

⌔𝑥3 +
4
𝑖=1   

+𝔦𝜉(𝑓25 − 1)𝐶5̅
⌔𝑚5

⌔ cosh𝑚5
⌔𝑥3,          (47) 

𝑡̃11 = ∑ (−𝜉2 +𝑚𝑖
⌔2𝑓25 − 𝛼𝑖

⌔ − 𝛽𝑖
⌔ − 𝑓13𝛾𝑖

⌔)𝐶𝑖̅
⌔ cosh𝑚𝑖

⌔𝑥3 +
4
𝑖=1   

+𝔦𝜉(𝑓25 − 1)𝐶5̅
⌔𝑚5

⌔ cosh𝑚5
⌔𝑥3,          (48) 

𝑡̃31 = −2𝔦𝜉 ∑ 𝑓12𝐶𝑖̅
⌔𝑚𝑖

⌔ sinh𝑚𝑖
⌔𝑥3 −

4
𝑖=1 (𝑚5

2 + 𝜉2)𝐶5̅
⌔ sinh𝑚𝑖

⌔𝑥3.     (49) 
 
Boundary restrictions 

The boundary restrictions for an isotropic photothermoelastic moisture plate subjected 
to carrier density source and moisture source are considered as: 
𝑡33 = 0,                       
𝑡31 = 0,                       
𝑇 = 0,                          
𝑁 = Ƒ3(𝑥1, 𝑥3, 𝑡),     

𝑀 = Ƒ4(𝑥1, 𝑥3, 𝑡),     }
 
 

 
 

           (50) 

where 
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Ƒ3(𝑥1, 𝑥3, 𝑡) = Ƒ30𝛿(𝑥1)(cosh 𝑥3)𝐻(𝑡 − 𝑎),        (51) 
Ƒ4(𝑥1, 𝑥3, 𝑡) = Ƒ40𝛿(𝑥1)(cosh 𝑥3)

sin𝜋𝑡

𝜂
.         (52) 

Here, 𝛿( ) is Dirac delta function, 𝐻( ) is Heaviside step function,  Ƒ30 is the magnitude of 
the carrier density source, Ƒ40 is the constant moisture applied on the boundary. 

Applying Laplace and Fourier transform defined by Eqs. (27)-(28) on Eqs. (50)–(52), 
we obtain: 
𝑡̃33 = 0,               

𝑡̃31 = 0,                

𝑇̃ = 0,                  

𝑁̃ = Ƒ̃3(𝜉, 𝑥3, 𝔰),

𝑀̃ = Ƒ̃4(𝜉, 𝑥3, 𝔰),}
 
 

 
 

 at 𝑥3 = ±𝑑 ,          (53) 

where 
Ƒ̃3(𝜉, 𝑥3, 𝔰) = Ƒ30(cosh 𝑥3)

𝑒−𝔰𝑎

𝔰
,          (54) 

Ƒ̃4(𝜉, 𝑥3, 𝔰) = Ƒ40(cosh 𝑥3) (
𝜂𝜋

𝜋2+𝜂2𝔰2
) (1 + 𝑒−𝜂𝔰).        (55) 

Substituting the values of 𝑡̃33, 𝑡̃31, 𝑇̃, 𝑁̃, 𝑀̃ from Eqs. (47), (49) and (40) in the 
transformed boundary restrictions (53), along with Eqs. (54)–(55), yield: 
∑ (𝑎𝑖

⌔𝐶𝑖̅
⌔ cosh𝑚𝑖

⌔𝑥3)
5
𝑖=1 = 0,          (56) 

∑ (𝑏𝑖
⌔𝐶𝑖̅

⌔ sinh𝑚𝑖
⌔𝑥3)

5
𝑖=1 = 0,           (57) 

∑ 𝛼𝑖
⌔𝐶𝑖̅

⌔ cosh𝑚𝑖
⌔𝑥3 =

4
𝑖=1 0,           (58) 

∑ 𝛽𝑖
⌔𝐶𝑖̅

⌔ cosh𝑚𝑖
⌔𝑥3 =

4
𝑖=1 Ƒ̃3(𝜉, 𝑥3, 𝔰),         (59) 

∑ 𝛾𝑖
⌔𝐶𝑖̅

⌔ cosh𝑚𝑖
⌔𝑥3 =

4
𝑖=1 Ƒ̃4(𝜉, 𝑥3, 𝔰),         (60) 

where 𝑎𝑖⌔ = 𝑚𝑖
⌔2 − 𝜉2𝑓25 − 𝛼𝑖

⌔ − 𝛽𝑖
⌔ − 𝑓13𝛾𝑖

⌔, 𝑏𝑖
⌔ = −2𝔦𝜉𝑓12𝑚𝑖

⌔, 𝑖 = 1, 2, 3, 4,  
and 𝑎5⌔ = 𝔦𝜉(𝑓25 − 1)𝑚5

⌔ and 𝑏5⌔ = −(𝑚5
⌔2 + 𝜉2)𝑓12. 

Equations (56)–(60) are expressed in matrix form as: 
𝐴⌔𝐶𝑖̅

⌔ = 𝐵̅,             (61) 
where 

𝐴⌔ =

[
 
 
 
 
𝑎1
⌔𝒞1 𝑎2

⌔𝒞2 𝑎3
⌔𝒞3 𝑎4

⌔𝒞4 𝑎5
⌔𝒞5

𝑏1
⌔𝒮1 𝑏2

⌔𝒮2 𝑏3
⌔𝒮3 𝑏4

⌔𝒮4 𝑏5
⌔𝒮5

𝛼1
⌔𝒞1 𝛼2

⌔𝒞2 𝛼3
⌔𝒞3 𝛼4

⌔𝒞4 0
𝛽1
⌔𝒞1 𝛽2

⌔𝒞2 𝛽3
⌔𝒞3 𝛽4

⌔𝒞4 0
𝛾1
⌔𝒞1 𝛾2

⌔𝒞2 𝛾3
⌔𝒞3 𝛾4

⌔𝒞4 0 ]
 
 
 
 

, 𝐶𝑖̅⌔ =

[
 
 
 
 
 
𝐶1̅
⌔

𝐶2̅
⌔

𝐶3̅
⌔

𝐶4̅
⌔

𝐶5̅
⌔]
 
 
 
 
 

 , 𝐵̅ =

[
 
 
 
 

0
0
0

Ƒ̃3(𝜉, 𝑑, 𝔰)

Ƒ̃4(𝜉, 𝑑, 𝔰)]
 
 
 
 

,    (62) 

and 𝒞𝑖 = cosh𝑚𝑖
⌔𝑑 , 𝒮𝑖 = sinh𝑚𝑖

⌔𝑑. 
From Eq. (62), we determine: 

𝐶𝑖̅
⌔ =

∆̅𝑖
⌔

∆̅⌔
 , 𝑖 = 1, 2, 3, 4, 5, 

∆̅⌔= 𝒞2𝒞3𝒞4(𝑏1
⌔𝑎5

⌔𝒮1𝒞5 − 𝑎1
⌔𝑏5

⌔𝒮5𝒞1)ℜ29 − 𝒞1𝒞3𝒞4(𝑏2
⌔𝑎5

⌔𝒮2𝒞5 − 𝑎2
⌔𝑏5

⌔𝒮5𝒞2)ℜ30 +    (63) 
+ 𝒞1𝒞2𝒞4(𝑏3

⌔𝑎5
⌔𝒮3𝒞5 − 𝑎3

⌔𝑏5
⌔𝒮5𝒞3)ℜ31−𝒞1𝒞2𝒞3(𝑏4

⌔𝑎5
⌔𝒮4𝒞5 − 𝑎4

⌔𝑏5
⌔𝒮5𝒞4)ℜ32 . 

where ∆̅𝑖⌔ =  determinant of 𝐴⌔ when ith column of 𝐴⌔ is replaced by 𝐵̅, which yield the 
following: 
∆̅1
⌔= ℜ33Ƒ̃3 +ℜ34Ƒ̃4; ∆̅2⌔= ℜ35Ƒ̃3 +ℜ36Ƒ̃4;  
∆̅3
⌔= ℜ37Ƒ̃3 +ℜ38Ƒ̃4; ∆̅4⌔= ℜ39Ƒ̃3 +ℜ40Ƒ̃4;         (64) 
∆̅5
⌔= ℜ41Ƒ̃3 +ℜ42Ƒ̃4,  

where 
ℜ29 = 𝑟̅1

⌔𝛾2
⌔ + 𝑟̅2

⌔𝛾3
⌔ + 𝑟̅3

⌔𝛾4
⌔ , 
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ℜ30 = 𝑟̅1
⌔𝛾1

⌔ + 𝑟̅4
⌔𝛾3

⌔ + 𝑟̅5
⌔𝛾4

⌔, 
ℜ31 = −𝑟̅2

⌔𝛾1
⌔ + 𝑟̅4

⌔𝛾2
⌔ + 𝑟̅6

⌔𝛾4
⌔ , 

ℜ32 = 𝑟̅3
⌔𝛾1

⌔ − 𝑟̅5
⌔𝛾2

⌔ + 𝑟̅6
⌔𝛾3

⌔, 
ℜ33 = (𝑎2

⌔𝑏5
⌔𝒮5𝒞2 − 𝑎5

⌔𝑏2
⌔𝒮2𝒞5)𝒞3𝒞4𝑟̿1

⌔ + (𝑎3
⌔𝑏5

⌔𝒮5𝒞3 − 𝑎5
⌔𝑏3

⌔𝒮3𝒞5)𝒞2𝒞4𝑟̿4
⌔ +  

+(𝑎4
⌔𝑏5

⌔𝒮5𝒞4 − 𝑎5
⌔𝑏4

⌔𝒮4𝒞5)𝒞2𝒞3𝑟̿6
⌔, 

ℜ34 = (𝑎2
⌔𝑏5

⌔𝒮5𝒞2 − 𝑎5
⌔𝑏2

⌔𝒮2𝒞5)𝒞3𝒞4𝑟̅1
⌔ + (𝑎3

⌔𝑏5
⌔𝒮5𝒞3 − 𝑎5

⌔𝑏3
⌔𝒮3𝒞5)𝒞2𝒞4𝑟̅2

⌔ +  
+(𝑎4

⌔𝑏5
⌔𝒮5𝒞4 − 𝑎5

⌔𝑏4
⌔𝒮4𝒞5)𝒞2𝒞3𝑟̅3

⌔, 
ℜ35 = (𝑎5

⌔𝑏1
⌔𝒮1𝒞5 − 𝑎1

⌔𝑏5
⌔𝒮5𝒞1)𝒞3𝒞4𝑟̿1

⌔ + (𝑎5
⌔𝑏3

⌔𝒮3𝒞5 − 𝑎3
⌔𝑏5

⌔𝒮5𝒞3)𝒞1𝒞4𝑟̿2
⌔ +  

+(𝑎4
⌔𝑏5

⌔𝒮5𝒞4 − 𝑎5
⌔𝑏4

⌔𝒮4𝒞5)𝒞1𝒞3𝑟̿3
⌔, 

ℜ36 = (𝑎5
⌔𝑏1

⌔𝒮1𝒞5 − 𝑎1
⌔𝑏5

⌔𝒮5𝒞1)𝒞3𝒞4𝑟̅1
⌔ + (𝑎5

⌔𝑏3
⌔𝒮3𝒞5 − 𝑎3

⌔𝑏5
⌔𝒮5𝒞3)𝒞1𝒞4𝑟̅4

⌔ +  
+(𝑎5

⌔𝑏4
⌔𝒮4𝒞5 − 𝑎4

⌔𝑏5
⌔𝒮5𝒞4)𝒞1𝒞3𝑟̅5

⌔,  
ℜ37 = (𝑎2

⌔𝑏5
⌔𝒮5𝒞2 − 𝑎5

⌔𝑏2
⌔𝒮2𝒞5)𝒞1𝒞4𝑟̿2

⌔ + (𝑎5
⌔𝑏1

⌔𝒮1𝒞5 − 𝑎1
⌔𝑏5

⌔𝒮5𝒞1)𝒞2𝒞4𝑟̿4
⌔ +  

+(𝑎5
⌔𝑏4

⌔𝒮4𝒞5 − 𝑎4
⌔𝑏5

⌔𝒮5𝒞4)𝒞1𝒞2𝑟̿5
⌔,  

ℜ38 = (𝑎5
⌔𝑏1

⌔𝒮1𝒞5 − 𝑎1
⌔𝑏5

⌔𝒮5𝒞1)𝒞2𝒞4𝑟̅2
⌔ + (𝑎2

⌔𝑏5
⌔𝒮5𝒞2 − 𝑎5

⌔𝑏2
⌔𝒮2𝒞5)𝒞1𝒞4𝑟̅4

⌔ +  
+(𝑎4

⌔𝑏5
⌔𝒮5𝒞4 − 𝑎5

⌔𝑏4
⌔𝒮4𝒞5)𝒞1𝒞2𝑟̅6

⌔, 
ℜ39 = (𝑎5

⌔𝑏2
⌔𝒮2𝒞5 − 𝑎2

⌔𝑏5
⌔𝒮5𝒞2)𝒞1𝒞3𝑟̿3

⌔ + (𝑎3
⌔𝑏5

⌔𝒮5𝒞3 − 𝑎5
⌔𝑏3

⌔𝒮3𝒞5)𝒞1𝒞2𝑟̿5
⌔ +  

+(𝑎5
⌔𝑏1

⌔𝒮1𝒞5 − 𝑎1
⌔𝑏5

⌔𝒮5𝒞1)𝒞2𝒞3𝑟̿6
⌔, 

ℜ40 = (𝑎5
⌔𝑏1

⌔𝒮1𝒞5 − 𝑎1
⌔𝑏5

⌔𝒮5𝒞1)𝒞2𝒞3𝑟̅3
⌔ + (𝑎2

⌔𝑏5
⌔𝒮5𝒞2 − 𝑎5

⌔𝑏2
⌔𝒮2𝒞5)𝒞1𝒞3𝑟̅5

⌔ +  
+(𝑎5

⌔𝑏3
⌔𝒮3𝒞5 − 𝑎3

⌔𝑏5
⌔𝒮5𝒞3)𝒞1𝒞2𝑟̅6

⌔, 
ℜ41 = −𝑏1

⌔𝒮1𝒞2𝒞3𝒞4(𝑎2
⌔𝑟̿1

⌔ + 𝑎3
⌔𝑟̿4

⌔ + 𝑎4
⌔𝑟̿6

⌔) + 𝑏2
⌔𝒮2𝒞1𝒞3𝒞4(𝑎1

⌔𝑟̿1
⌔ + 𝑎3

⌔𝑟̿2
⌔ − 𝑎4

⌔𝑟̿3
⌔) +  

+𝑏3
⌔𝒮3𝒞1𝒞2𝒞4(𝑎1

⌔𝑟̿4
⌔ − 𝑎2

⌔𝑟̿2
⌔ + 𝑎4

⌔𝑟̿5
⌔) + 𝑏4

⌔𝒮4𝒞1𝒞2𝒞3(𝑎1
⌔𝑟̿6

⌔ + 𝑎2
⌔𝑟̿3

⌔ − 𝑎3
⌔𝑟̿5

⌔), 
ℜ42 = 𝑏1

⌔𝒮1𝒞2𝒞3𝒞4(𝑎2
⌔𝑟̅1

⌔ + 𝑎3
⌔𝑟̅2

⌔ + 𝑎4
⌔𝑟̅3

⌔) − 𝑏2
⌔𝒮2𝒞1𝒞3𝒞4(𝑎1

⌔𝑟̅1
⌔ + 𝑎3

⌔𝑟̅4
⌔ + 𝑎4

⌔𝑟̅5
⌔) +  

+𝑏3
⌔𝒮3𝒞1𝒞2𝒞4(−𝑎1

⌔𝑟̅2
⌔ + 𝑎2

⌔𝑟̅4
⌔ + 𝑎4

⌔𝑟̅6
⌔) − 𝑏4

⌔𝒮4𝒞1𝒞2𝒞3(𝑎1
⌔𝑟̅3

⌔ − 𝑎2
⌔𝑟̅5

⌔ + 𝑎3
⌔𝑟̅6

⌔), 
where 
𝑟̅1
⌔ = 𝛼3

⌔𝛽4
⌔ − 𝛼4

⌔𝛽3
⌔, 𝑟̅2

⌔ = 𝛼4
⌔𝛽2

⌔ − 𝛼2
⌔𝛽4

⌔, 𝑟̅3
⌔ = 𝛼2

⌔𝛽3
⌔ − 𝛼3

⌔𝛽2
⌔, 

𝑟̅4
⌔ = 𝛼4

⌔𝛽1
⌔ − 𝛼1

⌔𝛽4
⌔, 𝑟̅5

⌔ = 𝛼1
⌔𝛽3

⌔ − 𝛼3
⌔𝛽1

⌔, 𝑟̅6
⌔ = 𝛼1

⌔𝛽2
⌔ − 𝛼2

⌔𝛽1
⌔, 

𝑟̿1 
⌔ = 𝛼4

⌔𝛾3
⌔ − 𝛼3

⌔𝛾4
⌔, 𝑟̿2

⌔ = 𝛼1
⌔𝛾4

⌔ − 𝛼4
⌔𝛾1

⌔,   𝑟̿3
⌔ = 𝛼1

⌔𝛾3
⌔ − 𝛼3

⌔𝛾1
⌔, 

𝑟̿4
⌔ = 𝛼2

⌔𝛾4
⌔ − 𝛼4

⌔𝛾2
⌔,   𝑟̿5

⌔ = 𝛼1
⌔𝛾2

⌔ − 𝛼2
⌔𝛾1

⌔,   𝑟̿6
⌔ = 𝛼3

⌔𝛾2
⌔ − 𝛼2

⌔𝛾3
⌔. 

Inserting the values of 𝐶𝑖̅⌔ from Eq. (63) in Eqs. (40), (45)–(47), and (49) ascertain the 
displacement components, temperature distribution, carrier density distribution, 
moisture, and stress components as: 
𝑢̃1 =

1

∆̅𝑖
⌔ (𝔖15

⌔ Ƒ̃3 +𝔖16
⌔ Ƒ̃4),   𝑢̃3 =

1

∆̅𝑖
⌔ (𝔖17

⌔ Ƒ̃3 +𝔖18
⌔ Ƒ̃4),   𝑇̃ =

1

∆̅𝑖
⌔ (𝔖19

⌔ Ƒ̃3 +𝔖20
⌔ Ƒ̃4),  

𝑁̃ =
1

∆̅𝑖
⌔ (𝔖21

⌔ Ƒ̃3 +𝔖22
⌔ Ƒ̃4),   𝑀̃ =

1

∆̅𝑖
⌔ (𝔖23

⌔ Ƒ̃3 +𝔖24
⌔ Ƒ̃4),   𝑡̃33 =

1

∆̅𝑖
⌔ (𝔖25

⌔ Ƒ̃3 +𝔖26
⌔ Ƒ̃4),  

𝑡̃31 =
1

∆̅𝑖
⌔ (𝔖27

⌔ Ƒ̃3 +𝔖28
⌔ Ƒ̃4), 

where 
𝔖15
⌔ = −𝔦𝜉 ∑ Ɽ̅2𝑖+1

⌔3
𝑖=0 −𝑚5

⌔Ɽ̅9
⌔, 𝔖16⌔ = −𝔦𝜉 ∑ Ɽ̅2𝑖

⌔4
𝑖=1 −𝑚5

⌔Ɽ̅10
⌔ ,  

𝔖17
⌔ = ∑ 𝑚𝑖−4

⌔ Ɽ̅2𝑖+1
⌔8

𝑖=5 − 𝔦𝜉Ɽ̅19
⌔ ,  𝔖18⌔ = ∑ 𝑚𝑖−4

⌔ Ɽ̅2𝑖+2
⌔8

𝑖=5 − 𝔦𝜉Ɽ̅20
⌔ , 𝔖19⌔ = ∑ 𝛼𝑖+1

⌔ Ɽ̅2𝑖+1
⌔3

𝑖=0 , 
𝔖20
⌔ = ∑ 𝛼𝑖+1

⌔ Ɽ̅2𝑖+2 
⌔3

𝑖=0 , 𝔖21⌔ = ∑ 𝛽𝑖+1
⌔ Ɽ̅2𝑖+1 

⌔3
𝑖=0 , 𝔖22⌔ = ∑ 𝛽𝑖+1

⌔ Ɽ̅2𝑖+2 
⌔3

𝑖=0 ,  
𝔖23
⌔ = ∑ 𝛾𝑖+1

⌔ Ɽ̅2𝑖+1 
⌔3

𝑖=0 ,   𝔖24⌔ = ∑ 𝛾𝑖+1
⌔ Ɽ̅2𝑖+2 

⌔3
𝑖=0 , 𝔖25⌔ = ∑ 𝑎𝑖+1

⌔ Ɽ̅2𝑖+1
⌔4

𝑖=0 ,  
𝔖26
⌔ = ∑ 𝑏𝑖+1

⌔ Ɽ̅2𝑖+2
⌔  4

𝑖=0 , 𝔖27⌔ = ∑ 𝑏𝑖−4
⌔ Ɽ̅2𝑖+1

⌔9
𝑖=5  , 𝔖28⌔ = ∑ 𝑏𝑖−4

⌔ Ɽ̅2𝑖+2
⌔9

𝑖=5 , 
where 
Ɽ̅1
⌔ = ℜ33𝒞1, Ɽ̅2

⌔ = ℜ34𝒞1, Ɽ̅3
⌔ = ℜ35𝒞2, Ɽ̅4

⌔ = ℜ36𝒞2, Ɽ̅5
⌔ = ℜ37𝒞3, Ɽ̅6

⌔ = ℜ38𝒞3,  
Ɽ̅7
⌔ = ℜ39𝒞4, Ɽ̅8

⌔ = ℜ40𝒞4, Ɽ̅9
⌔ = ℜ41𝒞5, Ɽ̅10

⌔ = ℜ42𝒞5, Ɽ̅11
⌔ = ℜ33𝒮1, Ɽ̅12

⌔ = ℜ34𝒮1, 
Ɽ̅13
⌔ = ℜ35𝒮1, Ɽ̅14

⌔ = ℜ36𝒮1, Ɽ̅15
⌔ = ℜ37𝒮1, Ɽ̅16

⌔ = ℜ38𝒮1, Ɽ̅17
⌔ = ℜ39𝒮1, Ɽ̅18

⌔ = ℜ40𝒮1, 
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Ɽ̅19
⌔ = ℜ41𝒮1, Ɽ̅20

⌔ = ℜ42𝒮1. 
 
Particular cases 

Case 1: For carrier density source Ƒ40 = 0 yield: 
(𝑢̃1, 𝑢̃3, 𝑇̃, 𝑁̃, 𝑀̃, 𝑡̃33, 𝑡̃31) =

1

∆̅𝑖
⌔ (𝔖15

⌔ , 𝔖17
⌔ , 𝔖19

⌔ , 𝔖21
⌔ , 𝔖23

⌔ , 𝔖25
⌔ , 𝔖27

⌔ )Ƒ̃3.     (66) 

Case 2: For moisture source Ƒ30 = 0 yield: 
(𝑢̃1, 𝑢̃3, 𝑇̃, 𝑁̃, 𝑀̃, 𝑡̃33, 𝑡̃31) =

1

∆̅𝑖
⌔ (𝔖16

⌔ , 𝔖18
⌔ , 𝔖20

⌔ , 𝔖22
⌔ , 𝔖24

⌔ , 𝔖26
⌔ , 𝔖28

⌔ )Ƒ̃4.     (67) 

 
Special case 

In absence of moisture impact i.e. when 𝐷𝑡𝑚 = 0,𝐾𝑚 = 0,  𝛾𝑚 = 0 yield the corresponding 
results for isotropic photothermoelastic plate, then Eq. (39) takes the form: 
(𝐷6 + ẞ𝑝1𝐷

4 + ẞ𝑝2𝐷
2 + ẞ𝑝3)(Փ̃, 𝑇̃, 𝑁̃) = 0,        (68) 

where 
ẞ𝑝1 = ℜ𝑝1 −ℜ𝑝3 − 𝜉

2 − 𝔰2; ẞ𝑝2 = ℜ𝑝2 − 𝜉
2ℜ𝑝1 − 𝔰

2ℜ𝑝1 −ℜ𝑝4 −ℜ𝑝6, 
ẞ𝑝3 = −𝜉2ℜ𝑝2 − 𝔰

2ℜ𝑝2 −ℜ𝑝5 −ℜ𝑝7, 
where 
ℜ𝑝1 = −2𝜉2 − 𝑓13 𝔰 − 𝑓14 − 𝓇1𝑓17 , 
ℜ𝑝2 = 𝜉4 + 𝑓13𝔰𝜉

2 + 𝑓14𝜉
2 + 𝑓17𝓇1𝜉

2 + 𝑓13𝑓17𝓇1𝔰 + 𝑓14𝑓17𝓇1 − 𝑓15𝑓16 ,  
ℜ𝑝3 = 𝑓18𝓇1 ; ℜ𝑝4 = −2𝑓18𝓇1𝜉2 − 𝑓13𝑓18𝓇1𝔰 − 𝑓14𝑓18𝓇1, 
ℜ𝑝5 = 𝑓18𝓇1𝜉

4 + 𝑓13𝑓18𝓇1𝔰𝜉
2 + 𝑓14𝑓18𝓇1𝜉

2, 
ℜ𝑝6 = −𝑓15𝑓18𝓇1 , ℜ𝑝7 = 𝑓15𝑓18𝓇1𝜉2. 

The general solution of Eq. (68) is represented as: 
(Փ̃, 𝑇̃, 𝑁̃) = ∑ (1, 𝛼𝑝𝑖 , 𝛽𝑝𝑖)

3
𝑖=1 𝐶𝑝̅𝑖 cosh𝑚𝑝𝑖 𝑥3,        (69) 

where 𝑚𝑝𝑖(𝑖 = 1, 2, 3)  are roots of 𝐷6 + ẞ𝑝1𝐷4 + ẞ𝑝2𝐷2 + ẞ𝑝3 = 0. 
The coupling parameters 𝛼𝑝𝑖, 𝛽𝑝𝑖 are given by: 

𝛼𝑝𝑖 = ∑
ℜ𝑝3𝑚𝑝𝑖

4 +ℜ𝑝4𝑚𝑝𝑖
2 +ℜ𝑝5

𝑚𝑝𝑖
4 +ℜ𝑝1𝑚𝑝𝑖

2 +ℜ𝑝2

3
𝑖=1  ,          (70) 

𝛽𝑝𝑖 = ∑
ℜ𝑝6𝑚𝑝𝑖

2 +ℜ𝑝7

𝑚𝑝𝑖
4 +ℜ𝑝1𝑚𝑝𝑖

2 +ℜ𝑝2

3
𝑖=1   .           (71) 

In this case, Ψ̃ = 𝐶𝑝̅4 sinh𝑚𝑝4𝑥3, where 𝑚𝑝4 is a root of equation 𝐷2 + ẞ𝑝4 = 0 ,  
ẞ𝑝4 is same as ẞ6 and 𝑚𝑝4 is same as 𝑚5

⌔. 
Transformed boundary restrictions in this case lead to: 

𝑡̃33 = 0,   𝑡̃31 = 0,   𝑇̃ = 0,   𝑁̃ = Ƒ̃3(𝜉, 𝑥3, 𝔰) at 𝑥3 = ±𝑑.       (72) 
Utilizing these revised boundary restrictions, we compute the associated results as 

𝑢̃1 =
1

∆𝑝
(𝔖̅𝑝1Ƒ̃3), 𝑢̃3 =

1

∆𝑝
(𝔖̅𝑝2Ƒ̃3),    

𝑇̃ =
1

∆𝑝
(𝔖̅𝑝3Ƒ̃3), 𝑁̃ =

1

∆𝑝
(𝔖̅𝑝4Ƒ̃3),            (73) 

𝑡̃33 =
1

∆𝑝
(𝔖̅𝑝5Ƒ̃3), 𝑡̃31 =

1

∆𝑝
(𝔖̅𝑝6Ƒ̃3),  

where 
∆𝑝  is determinant of matrix 𝐴𝑝 which is given by: 
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𝐴𝑝 =

[
 
 
 
 
𝑎𝑝1𝒞𝑝1 𝑎𝑝2𝒞𝑝2 𝑎𝑝3𝒞𝑝3 𝑎𝑝4𝒞𝑝4
𝑏𝑝1𝒮𝑝1 𝑏𝑝2𝒮𝑝2 𝑏𝑝3𝒮𝑝3 𝑏𝑝4𝒮𝑝4
𝛼𝑝1𝒞𝑝1 𝛼𝑝2𝒞𝑝2 𝛼𝑝3𝒞𝑝3 0

𝛽𝑝1𝒞𝑝1 𝛽𝑝2𝒞𝑝2 𝛽𝑝3𝒞𝑝3 0 ]
 
 
 
 

, 

with 
𝔖̅𝑝1 = −𝔦𝜉 ∑ Ɽ̅𝑖

𝑝3
𝑖=1 −𝑚𝑝4Ɽ4

𝑝, 𝔖̅𝑝2 = ∑ 𝑚𝑝𝑖Ɽ̅𝑖+4
𝑝3

𝑖=1 − 𝔦𝜉Ɽ8
𝑝, 𝔖̅𝑝3 = ∑ 𝛼𝑝𝑖Ɽ̅𝑖

𝑝3
𝑖=1 , 

𝔖̅𝑝4 = ∑ 𝛽𝑝𝑖Ɽ̅𝑖
𝑝3

𝑖=1 , 𝔖̅𝑝5 = ∑ 𝑎𝑝𝑖Ɽ̅𝑖
𝑝4

𝑖=1 , 𝔖̅𝑝6 = ∑ 𝑏𝑝𝑖Ɽ̅𝑖+4
𝑝4

𝑖=1 , 
and 
Ɽ̅1
𝑝 = ℜ̅𝑝8𝒞𝑝1, Ɽ̅2

𝑝 = ℜ̅𝑝9𝒞𝑝2, Ɽ̅3
𝑝 = ℜ̅𝑝10𝒞𝑝3, Ɽ̅4

𝑝 = ℜ̅𝑝11𝒞𝑝4,  
Ɽ̅5
𝑝 = ℜ̅𝑝8𝒮𝑝1,   Ɽ̅6

𝑝 = ℜ̅𝑝9𝒮𝑝2,   Ɽ̅7
𝑝 = ℜ̅𝑝10𝒮𝑝3,   Ɽ̅8

𝑝 = ℜ̅𝑝11𝒮𝑝4, 
where 
ℜ̅𝑝8 = 𝑎𝑝2𝑏𝑝4𝛼𝑝3𝒞𝑝2𝒞𝑝3𝒮𝑝4 − 𝑎𝑝3𝑏𝑝4𝛼𝑝2𝒞𝑝2𝒞𝑝3𝒮𝑝4 +  
+𝑎𝑝3𝒞𝑝4(𝑏𝑝3𝛼𝑝2𝒞𝑝2𝒮𝑝3 − 𝑏𝑝2𝛼𝑝3𝒞𝑝3𝒮𝑝2), 
ℜ̅𝑝9 = −𝑎𝑝1𝑏𝑝4𝛼𝑝3𝒞𝑝1𝒞𝑝3𝒮𝑝4 + 𝑎𝑝3𝑏𝑝4𝛼𝑝1𝒞𝑝1𝒞𝑝3𝒮𝑝4 +  
+𝑎𝑝4𝒞𝑝4(𝑏𝑝1𝛼𝑝3𝒞𝑝3𝒮𝑝1 − 𝑏𝑝3𝛼𝑝1𝒞𝑝1𝒮𝑝3), 
ℜ̅𝑝10 = 𝑎𝑝1𝑏𝑝4𝛼𝑝2𝒞𝑝1𝒞𝑝2𝒮𝑝4 − 𝑎𝑝2𝑏𝑝4𝛼𝑝1𝒞𝑝1𝒞𝑝2𝒮𝑝4 + 
+𝑎𝑝4𝒞𝑝4(𝑏𝑝2𝛼𝑝1𝒞𝑝1𝒮𝑝2 − 𝑏𝑝1𝛼𝑝2𝒞𝑝2𝒮𝑝1), 
ℜ̅𝑝11 = 𝑎𝑝1𝒞𝑝1(𝑏𝑝2𝛼𝑝3𝒞𝑝3𝒮𝑝2 − 𝑏𝑝3𝛼𝑝2𝒞𝑝2𝒮𝑝3) + 
−𝑎𝑝2𝒞𝑝2(𝑏𝑝1𝛼𝑝3𝒞𝑝3𝒮𝑝1 − 𝑏𝑝3𝛼𝑝1𝒞𝑝1𝒮𝑝3) + 𝑎𝑝3𝒞𝑝3(𝑏𝑝1𝛼𝑝2𝒞𝑝2𝒮𝑝1 − 𝑏𝑝2𝛼𝑝1𝒞𝑝1𝒮𝑝2). 
 
Numerical outcomes and interpretation 
For the mathematical calculations, we implement the isotropic Silicon (Si) material 
constants (Alenazi et al. [49], Table 1). 
 
Table 1. Material constants for the isotropic Silicon (Si) material 

Symbol, Unit Value Symbol, Unit Value 
𝜆, N/m2 6.4 ∙ 1010 𝐸𝑔 , eV 1.11 
𝜇, N/m2 6.5 ∙ 1010 𝐷𝑡

𝑚 , m2(%H2O)/s(K) 2.1 ∙ 10−7 
𝛼𝑡 , K

−1 4.14 ∙ 10−6 𝑇𝑜, K 800 
𝛼n, m

3 −9 ∙ 10−31 𝐾𝑚, (kg msM⁄ ) 2.2 ∙ 10−8 
𝛼𝑚, cm/cm(%H2O) 2.68 ∙ 10−3 𝐷𝑚 , m

2 s−1 0.35 ∙ 10−2 
𝜌, kg/m3 2330 𝐷𝑚

𝑡 , m2s(K)/(%H2O) 0.648 ∙ 10−6 
𝐷e, m

2 s⁄  2.5 ∙ 10−3 𝑘,Wm−1K−1 150 
𝜏, s 5 ∙ 10−5 𝑛𝑜, m

−3 1010 
𝛿,m−3 K−1 0.5 𝑚𝑜 10 % 
𝐶e, J/(kgK) 695   

 
The Matlab (R2014a) software is utilized for computing in the following scenarios: 

Photothermoelastic moisture plate with 𝜏𝑜 = .03, 𝜏𝑜 = .02 (IPTMT1); 
Photothermoelastic moisture plate with 𝜏𝑜 = .05, 𝜏𝑜 = .04 (IPTMT2); 
Photothermoelastic moisture plate with 𝜏𝑜 = .03, 𝜏𝑜 = .04 (IPTMT3); 
Photothermoelastic moisture plate with 𝜏𝑜 = 0, 𝜏𝑜 = 0 (IPTMT4); 
Photothermoelastic without moisture plate 𝜏𝑜 = .03, 𝜏𝑜 = 0 (IPTWMT1); 
Photothermoelastic without moisture plate 𝜏𝑜 = .05, 𝜏𝑜 = 0 (IPTWMT2). 
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Fig. 1. Variation of normal stress 𝑡33 w.r.t. 𝑥1 owing to carrier density source 
 

 
 

Fig. 2. Variation of temperature T w.r.t. 𝑥1 owing to carrier density source 
 

 
 

Fig. 3. Variation of carrier density N w.r.t. 𝑥1 owing to carrier density source 
 

 
 

Fig. 4. Variation of moisture M w.r.t. 𝑥1 owing to carrier density source 
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Figures 1–4 represent how moisture affects the field variables (𝑡33, 𝑇, 𝑁,𝑀) when 
there is carrier density source. Figures 5–8 represent the impact of relaxation times in 
case of carrier density source and Figures 9–12 represent the impact of relaxation times 
in case of moisture source on the same field variables (𝑡33, 𝑇, 𝑁,𝑀). 

In all the figures, the solid line (            ) represents IPTMT1, the dotted (⋯⋯⋯) 
line represents IPTMT2, the solid line containing the center symbol square (− ◽ −) 
indicates to IPTMT3 and the solid line containing the center symbol triangle (− △ −) 
represents IPTMT4, the dash (− − −) line corresponds to IPTWMT1, the dash dot 
(− ∙ − ∙ −) line corresponds to IPTWMT2. 

Figure 1 displays the variation of normal stress 𝑡33 with 𝑥1. With the exception of  
the IPTMT1 model, 𝑡33 for the IPTMT2, IPTWMT1, and IPTWMT2 models exhibit a declining 
trend in proximity to the source. Across the entire domain, 𝑡33 reflects identical behavior 
with less fluctuations for the IPTMT1 and IPTMT2 models whereas it fluctuates more and 
displays an opposing oscillatory pattern for the IPTWMT1 and IPTWMT2 models. 

Figure 2 presents the variation of temperature T with 𝑥1. T exhibits a large-scale 
oscillating behavior for the IPTWMT2 model. T for IPTWMT1 and IPTWMT2 demonstrates 
a decreasing tendency initially, and it tracks the opposite trend for 0.5 ≤ 𝑥1. T for IPTMT1 
and IPTMT2 displays an overall opposing oscillating pattern, with the exception of some 
limited region where their behavior aligns. 

Figure 3 shows how the carrier density N changes with 𝑥1. Close to the source, all 
models exhibits a decreasing trend in N, with the IPTMT1 model showing the steepest 
decline. N for all models possess a pattern of minor oscillations within the range 
1.5 ≤ 𝑥1 ≤ 3, followed by a slight and monotonic increasing trend thereafter. 

Figure 4 depicts the variation of moisture M with 𝑥1. In the range 0 ≤ 𝑥1 ≤ 3, M  
for IPTMT2 exhibits more pronounced oscillatory trend, followed by slight oscillations 
thereafter. M for IPTMT2 decreases within the range 0 ≤ 𝑥1 ≤ 1.5, transitioning into 
oscillatory behavior beyond this interval. 

Figure 5 demonstrates the variation of normal stress 𝑡33 with 𝑥1. All models indicate a 
declining pattern in 𝑡33 near the source, with the IPTMT3 model showing the highest magnitude 
and the IPTMT4 model depicting the smallest magnitude. As 𝑥1increases 𝑡33 continues to 
decline with minor oscillations with slight variations in magnitude across the models. 

Figure 6 illustrates how temperature T varies with 𝑥1. With the exception of a 
limited initial segment, T for IPTMT1 and IPTMT2 reflect the opposite oscillatory patterns. 
T for the IPTMT3 and IPTMT4 models exhibit an opposite fluctuating behavior within the 
range 0 ≤ 𝑥1 ≤ 3  but beyond this interval their trends aligns. 

Figure 7 depicts the variation of carrier density N with 𝑥1. Close to the source, all 
models reveal a decreasing trend in N, with IPTMT3, reaching the highest magnitude and 
IPTMT2 the lowest. As the distance increases, N begins to oscillate slightly, tends to 
converge, and shows an increasing trend across all models. 

Figure 8 shows how moisture M changes along 𝑥1. M for IPTMT1 and IPTMT2 exhibit 
opposite oscillatory patterns throughout the entire domain, except for an initial small 
region where their responses temporarily align. On the other hand, M for IPTMT3 and 
IPTMT4 display inverse oscillatory behaviors within the range 0 ≤ 𝑥1 ≤ 2.25, subsequently 
exhibiting comparable behavior thereafter. 
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Fig. 5. Impact of relaxation times on normal stress 𝑡33 due to carrier density source 
 

 
 

Fig. 6. Impact of relaxation times on temperature T due to carrier density source 
 

 
 

Fig. 7. Impact of relaxation times on carrier density N due to carrier density source 
 

 
 

Fig. 8. Impact of relaxation times on moisture M due to carrier density source 
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Fig. 9. Impact of relaxation times on normal stress 𝑡33 due to moisture source 
 

 
 

Fig. 10. Impact of relaxation times on temperature T due to moisture source 
 

 
 

Fig. 11. Impact of relaxation times on carrier density N due to moisture source 
 

 
 

Fig. 12. Impact of relaxation times on moisture M due to moisture source 
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Figure 9 displays the variation of normal stress 𝑡33 with 𝑥1. 𝑡33 exhibits an increasing 
tendency near the vicinity of the source across all models. With the increasing distance, 
𝑡33 begins to decrease in reverse order and reveals an oscillating tendency with 
magnitudes varying between models. 

Figure 10 shows the variation of temperature T with 𝑥1. T for IPTMT1 and IPTMT2 
exhibit an initial decline, followed by opposite oscillatory trend in the range 0.75 ≤ 𝑥1 ≤ 5. 
Meanwhile, T for IPTMT3 and IPTMT4 displays a similar oscillatory behavior in the range 
0 ≤ 𝑥1 ≤ 4, and beyond this range, it transitions into an opposite oscillatory behavior. 

Figure 11 illustrates how the carrier density N varies with 𝑥1. Close to the source, N 
for IPTMT1 and IPTMT3 models follow a declining trend, though N for IPTMT2 and 
IPTMT4 shows an increasing pattern. N for IPTMT3 and IPTMT4 demonstrate more 
pronounced oscillations compared to IPTMT1 and IPTMT2 models. N for IPTMT1 displays 
significant oscillations in the range 0 ≤ 𝑥1 ≤ 3, and slight oscillation around 3 ≤ 𝑥1. N 
for IPTMT2 follows an increasing trend in the range 0 ≤ 𝑥1 ≤ 2, and maintains a relatively 
mild oscillatory pattern beyond this range. The oscillatory pattern of N for IPTMT3 and 
IPTMT4 is opposing with high variation in magnitude. 

Figure 12 displays the variation of moisture M with 𝑥1. Near the source, M for all the 
models exhibit a decreasing trend, with the IPTMT3 model showing the highest 
magnitude and IPTMT1 model the lowest and display slight oscillations within the range 
1 ≤ 𝑥1 ≤ 3. Near the source, there is a notable difference in magnitude for all the models, 
while away from the source, the magnitudes tend to converge, and all models exhibit a 
consistent upward trend, accompanied by slight amplitude variations. 

 

Conclusions 
This study investigates the deformation in an isotropic IPTM plate due to the influence 
of a carrier density source and a moisture source. General equations are used to derive 
the governing equations and constitutive relations for the plate under consideration. To 
simplify the analysis, non-dimensional variables and potential functions are employed. 
Analytical solutions for the resulting equations are obtained through Laplace and Fourier 
transforms, and numerical inversion techniques are applied to retrieve the solutions in 
the physical domain. Graphical representations illustrate the effects of moisture, 
relaxation times, and source terms on various physical fields such as stress, temperature, 
carrier density, and moisture distribution. Based on the numerical results, the following 
key conclusions can be drawn. 

Carrier density source. The presence of moisture leads to a more stable pattern of 
normal stress, showing reduced fluctuations. Moisture presence also slightly attenuates 
temperature variations. Carrier density maintains comparable behavior, with higher 
magnitude induced by moisture. Moisture content oscillates more strongly with larger 
thermal and moisture relaxation times (τₒ = 0.05, τ⁰ = 0.04), near the source. For all 
models, normal stress display oscillations. Near the source, normal stress reaches higher 
values, for smaller thermal and higher moisture relaxation times (τₒ = 0.03, τ⁰ = 0.04). 
Near the source, Temperature and Moisture fluctuations are more pronounced and attain 
extremes for higher thermal and moisture relaxation times (τₒ = 0.05, τ⁰ = 0.04), while at 
greater distances, stronger fluctuations occur under smaller relaxation times (τₒ = 0.03, 
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τ⁰ = 0.02). Carrier density for all models initially decreases monotonically then transitions 
into a slight oscillatory phase and subsequently shows a modest increase, amplified under 
smaller thermal and higher moisture relaxation times. 

Moisture source. Normal stress intensifies near the source, and its peaks and valleys 
occur at identical positions across all models. It has peaks for lower thermal and higher 
moisture relaxation times (τₒ = 0.03, τ⁰ = 0.04) and lower overall magnitude when relaxation 
effects are absent. Near the source, temperature fluctuations are more pronounced for 
smaller thermal and moisture relaxation times (τₒ = 0.03, τ⁰ = 0.02). At greater distances, 
temperature shows stronger fluctuations with increased magnitude for lower thermal and 
higher moisture relaxation times (τₒ = 0.03, τ⁰ = 0.04). Carrier density exhibits pronounced 
oscillations across the domain under the conditions of high moisture relaxation time 
(τₒ = 0.03, τ⁰ = 0.04) and when relaxation times are disregarded (τₒ = 0, τ⁰ = 0). Moisture 
concentration undergoes a monotonic decrease in all cases, with higher attenuation 
magnitude corresponding to lower thermal and higher moisture relaxation times (τₒ = 0.03, 
τ⁰ = 0.04). However, with distance, the moisture profile transitions into an oscillatory form 
that eventually converges, subsequently exhibiting a minor increasing trend. 

The proposed method offers a unified analytical approach to study coupled 
thermoelastic, moisture, and photo-induced effects in semiconducting materials. It is 
particularly relevant for microelectronic, optoelectronic, and photovoltaic devices, where 
thermal loading, carrier excitation, and moisture exposure affect performance and 
reliability. The model aids in optimizing thermal management and structural stability, 
providing deeper insight into transient behavior under realistic operating conditions. 
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