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ABSTRACT  
A mathematical model investigating the dispersions of Rayleigh wave on an inhomogeneous rotating half-
space with magnetic field influence, impedance and variable amplitudes of corrugation is presented. 
Normal mode approach and non-dimensionalization principles were employed to the equations of motion. 
Derivations of the analytical solutions of the stresses and displacement components occasioned by the 
wave on the material were achieved. Variable amplitudes of corrugation due to a linear function 
incorporated as the amplitude of the trigonometric Fourier series and the impedance conditions enriches 
the material characterizations and paved way in formulating the structure or nature of corrugation at the 
boundary. Thus, dispersion relations of Rayleigh waves due to homogeneous impedance and 
inhomogeneous impedance were analytically given and graphically depicted with the variations of the 
physical parameters. 
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Introduction 
Mechanical wave propagation is dependent on the physical composition of materials. 
Scientists in the fields of seismology and geophysical analysis usually devote and 
maintain clear position in examining compositions associated with most materials before 
employing them into structural and engineering constructions or applications. This is 
largely pertinent to ensure quality occasioned by such materials through which waves 
and in particular surface waves modulate. These materials are classed into two forms; 
anisotropic and isotropic materials and following which homogeneous and 
inhomogeneous characterization of the materials would ensue. Also, the inhomogeneity 
of these materials hugely depends on the nature of the deformation which typically lies 
in the form of growth or decay of the material parameters or other geometrical 
considerations of the interacting material constants. 

Furthermore, mathematics, physics, and geophysics scientists have maintained 
constant researches in this field of solid mechanics by exploring and developing models that 
could necessitate great insights about the behaviors of these materials when acted upon by 
stress and other environmental factors. Given this, the consideration of just isotropic material 
may not holistically define or describe exact continuum information in composites. Part of 
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this line of thought yielded examination on anisotropic material exhibitions. Anisotropic 
materials exist as composites, for instance, the Fiber-reinforced composites, and the 
orthotropic materials, etc., to mention but a few, are highly regarded for engineering 
applications due to their high positive mechanical properties. On this note, Spencer [1] 
developed and presented a work that hinged on deformation of fiber-reinforced material 
as a composite whose characterizations in terms of tensile strength, weightlessness 
(leading to flexibility), and so on, endears them to various industrial applications. 

In a different vein, fiber-reinforced composites, also, might not give definite results 
in terms of its behavior if the environmental factors or other physical interacting 
quantities like magnetic fields Abd-Alla et al. [2] or maybe rotation Schoenberg et al. [3] 
surrounding it are not factored into the mathematical model equations characterizing a 
particular phenomenon. This is solely because they have a way of giving near accurate 
predictions of the model problem needed for insightful reach of decisions. Aside the 
surrounding characterizations, researchers equally exploit other mechanical properties 
such as the impedance [4], which act like a resistance to the motion of matter or acoustic 
energy on a material alongside appropriate boundary conditions which could be planar 
or non-planar like the corrugated boundary [5] to enrich the understating of some 
complex mechanical structures and surface wave (Stoneley wave, Love wave and 
Rayleigh wave) propagations along and across interfaces of materials. Hence, the basic 
mechanical reasoning behind this design of corrugation is to positively enhance the 
stiffness-to-weight ratio of the material by giving optimal geometric representation 
rather than addition of more material. Thus, increase in bending stiffness, energy 
absorption, and anisotropic behavior exhibitions cum buckling resistance are some of the 
key principles behind corrugation of materials. While variable corrugation shapes or 
geometries of different heights, or even hierarchical construction on materials, allows for 
further enhancement and optimization of the mechanical properties of the material for a 
particular performance needs. 

In the foregoing, several authors have made contributions to further the 
investigations associated with these corrugated-impedance boundary effects on materials 
along with other interesting wave phenomena. Singh et al. [6] and Singh et al. [7,8]  
worked on qP‐wave at a corrugated interface between two different initial stress elastic 
semi-infinite material, influence of corrugated boundary surfaces reinforcement, 
hydrostatic stress, heterogeneity and anisotropy on Love type wave propagation and also 
on the effect of loose bonding and corrugation on Rayleigh‐type wave modulation. More 
so, Das et al. [9] dealt with surface waves in an inhomogeneous material which included 
gravity. Abd-Alla et al. [10] investigated impact of rotation on a non-homogeneous 
infinite elastic cylinder of orthotropic material under magnetic influences. 
Chattopadhyay et al. [11] opined the dispersion equation of Love wave based on 
irregularity in the thickness of non-homogeneous crustal layer. Following this trend, 
Roy et al. [12] worked on the propagation and reflection of plane waves in a rotating 
magneto-elastic fiber-reinforced semi space with surface stress. Singh et al. [13], 
Gupta et al. [14], Anya et al. [15–18] dealt on magnetic effects on surface waves in a 
rotating non-homogeneous half-space with grooved-impedance boundary conditions and 
non-local effects, respectively. Likewise, Maleki et al. [19] developed model tests on 
determining the effect of various geometrical aspects on horizontal impedance function of 
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surface footings. Chowdhury et al. [20] examined the dispersion of Stoneley waves through 
the irregular common interface of two hydrostatic stressed MTI media. Singh et al. [21,22] 
contributed their investigation on Rayleigh wave at an impedance boundary of an 
incompressible micropolar and orthotropic solid, respectively while Sahu et al. [23] dealt 
on the Mathematical analysis of Rayleigh waves at the imperfect boundary between 
orthotropic and micropolar media. Giovannini [24] worked on the theory of dipole-
exchange spin-wave propagation in periodically corrugated films. And Rakshit et al. [25,26] 
also proposed a stress analysis for the irregular surface of visco-porous piezoelectric half-
space subjected to a moving load. Subsequently, Gupta et al. [27] presented different 
theories of thermo-elasticity under the Rayleigh wave propagation along an isothermal 
boundary while Kaushal et al. [28] examined wave propagation under the influence of 
voids and non-free surfaces in a micropolar elastic medium. Also, Sharma et al. [29] dealt 
on the fractional strain analysis on reflection of plane waves at an impedance boundary of 
non-local swelling porous thermo-elastic medium. Sharma et al. [30] further made input 
on the effect of rotation for generalized thermo-viscoelastic Rayleigh-Lamb wave 
propagating on materials while its counterpart Shaw et al. [31] utilized eigen function 
expansion approach to examine Rayleigh wave propagation in an orthotropic magneto-
thermoelastic half-space. Moreover, Othman et al. [32–34] incorporated effects of 
magnetic field on a rotating thermo-elastic medium with some other physical properties 
like voids, relaxation time and reinforcement of fibers to study wave propagation on 
structures. Thus, we observed keenly that all these investigations were associated with 
singular or part investigations of the interacting physical quantities of rotation, 
micropolar effects, homogeneity, inhomogeneity, magnetism, corrugation, etc., which fall 
short as constituted in this present investigation where the corrugation effects possess 
variable amplitudes whilst considering different ideas of impedance characterizations in 
generating the dispersions of Rayleigh wave. 

In view of the literatures posited above, the present investigation is geared towards 
exploring a mathematical model and analysis on the dispersion of Rayleigh wave for a 
rotating inhomogeneous fiber-reinforced solid with magnetic influences under impedance 
and variable amplitudes of corrugation. Following this, the variable amplitude of 
corrugation is conceived to be a linear function of the horizontal coordinate and 
incorporated at the point of the constant amplitude using the Trigonometric Fourier series 
cosine terms. The equations of motion were derived using the stress-strain relations of a 
fiber-reinforced material through the fundamental governing laws of motion of Physics. In 
addition, the analytical solution is developed by utilizing the eigenvalue method also called 
normal mode method. We developed both the homogeneous and inhomogeneous 
impedance conditions at the boundary via which the two dispersion relations of the 
Rayleigh wave were analytically derived and presented. Graphical results depicting the 
impact of the contributing physical parameters of inhomogeneity, rotation of the medium, 
corrugation parameters (variable amplitude parameters), wavenumber, and magnetic effect 
on the two dispersion relations of the Rayleigh wave due to homogeneous and 
inhomogeneous impedance were achieved. We observe that particular cases found in the 
literature can be obtained from our results as special cases especially when we neglect one 
of the parameters associated with the variable amplitudes of corrugation leading to 
constant or uniform amplitude of corrugation model.  
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The mathematical model and formulations 
In this section, we introduce the basic fields’ equations characterizing the mathematical 
model. In line with this, the mathematical formulations of the model using the 
constitutive equations of fiber-reinforced material in its homogeneous form as introduced 
by Spencer [1] and the magnetic field effect, Abd-Alla et al. [2] and Anya et al. [35,36] are 
given below: 

𝜎𝑖𝑗 = 𝜆𝜀𝑘𝑘𝛿𝑖𝑗 + 2𝜇𝑇𝜀𝑖𝑗 + 𝛼(𝑓𝑘𝑓𝑚𝜀𝑘𝑚𝛿𝑖𝑗 + 𝜀𝑘𝑘𝑓𝑖𝑓𝑗) + 2(𝜇𝐿 − 𝜇𝑇)(𝑓𝑖𝑓𝑘𝜀𝑘𝑗 +

+𝑓𝑗𝑓𝑘𝜀𝑘𝑖) + 𝛽(𝑓𝑘𝑓𝑚𝜀𝑘𝑚𝑓𝑖𝑓𝑗), 𝑖 = 𝑗 = 𝑘 = 𝑚 = 1,2,3,  
(1) 

𝐹𝑖 =  𝜇0𝐻0
2(𝑒,1 − 𝜀0𝜇0𝑢̈1, 𝑒,2 − 𝜀0𝜇0𝑢̈2, 0),  𝑖 = 1,2,3,  (2) 

where 𝜎𝑖𝑗 denotes the stress tensor, 𝜀𝑖𝑗 prescribe the strain tensor, 𝑢𝑖 represents the 
displacement vector, 𝜆 stipulate the Lames constant, (𝛼, 𝛽, (𝜇𝐿 − 𝜇𝑇)) are the fiber-reinforced 
parameters, 𝛿𝑖𝑗 entails the Kronecker-delta function; and 𝐹𝑖 implies the magnetic force such 
that 𝐹𝑖 = (𝐹1, 𝐹2, 𝐹3). However, the strain is equally defined to be mathematically 
represented as 𝜀𝑖𝑗 =

1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) and 𝑓 = (𝑓1, 𝑓2, 𝑓3) such that 𝑓 = (1,0,0) prescribe  

the fiber-reinforced directions. 𝐻𝑖 is the magnetic vector field defined to be 𝐻𝑖 = 𝐻0𝛿𝑖3 + ℎ𝑖 , 
ℎ𝑖 = (0,0, −𝑒), 𝑒 = 𝑢𝑖,𝑖, 𝑖 = 1,2. Also, ℎ𝑖 is induced magnetic field such that 𝜀0 and 𝜇0 
connotes the electric permeability and the magnetic permeability, as the case maybe, 
owing to the Maxwell’s theory of electromagnetism. This model postulates its analysis in 
2-D such that 𝑥1𝑥2-plane becomes the plane of consideration and such that 
ℎ𝑖(𝑥1, 𝑥2, 𝑥3) = −𝑢𝑘,𝑘𝛿𝑖3. Owing to all these formulations, the governing equations of 
motion for the rotating Schoenberg et al. [3] homogeneous fiber-reinforced material 
under magnetic field are thus, presented: 

𝜎𝑖𝑗,𝑗 + 𝐹𝑖 = 𝜌{𝑢̈𝑖 + 𝛺𝑗𝑢𝑗𝛺𝑖 − 𝛺2𝑢𝑖 − 2𝜀𝑖𝑗𝑘𝛺𝑗𝑢̇𝑘}.  (3) 
The parameters in Eq. (3) like the 𝜀𝑗𝑖𝑚 represents the Levi-Civita tensor (alternating 

symbol) and 𝛺 stipulates the rotation of the medium. Einstein summation indices are used 
and where index after comma represents partial rate of change with respect to coordinate 
and superscript dot stipulate partial rate of change with respect to time. Since our 
formulation is making use of the deformation in the 𝑥1𝑥2-plane, we take 𝑥3 = 0 and 
𝛺(0,0,1) as the rotation (which purely involved the Coriolis and centrifugal forces arising 
from a rotating coordinate frame) of the half-space about the 𝑥3-axis. It then means that 
the displacements 𝑢1 ≠ 0 and 𝑢2 ≠ 0, for any change in plane and coordiantes of 
consideration. 

Furthermore, the material is originally presumed to be inhomogeneous but the 
fiber-reinforced medium so presented in Eq. (1) is homogeneous. It suffices that the 
parameters of the homogeneous fiber-reinforced material be considered to decay or grow 
such that the rate of the occurrence is proportional to its value at that instance. This 
would ultimately introduce the inhomogeneity into the model. This is such that the elastic 
module, elastic parameters, and density of the half-space take the representation: 
(𝜆, 𝛼, 𝜇𝐿 , 𝜇𝑇 , 𝛽, 𝜌) = (𝜆0, 𝛼0, 𝜇𝐿0, 𝜇𝑇0

, 𝛽0, 𝜌0)𝑒−𝑚𝑥2 , Khan et al. [37] and Munish et al. [38]. 
In the given proportionality above, 𝑚 describes the inhomogeneity of the fiber-reinforced 
material. 

Thus, employing these inhomogeneous parameters into Eq. (1), the component 
forms of the equations of motion of the wave are presented: 
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(𝜆 + 2𝛼 + 4𝜇𝐿 − 2𝜇𝑇 + 𝛽 + 𝜇0𝐻0
2)𝑢1,11 + (𝛼 + 𝜆 + 𝜇𝐿 + 𝜇0𝐻0

2)𝑢2,21 + 𝜇𝐿𝑢1,22 − 
−𝑚𝜇𝑇(𝑢1,2 + 𝑢2,1) = {𝜌 + 𝜀0𝜇0

2𝐻0
2}𝑢̈1 − 𝜌𝛺2𝑢1 − 2𝛺𝑢̇2},  (4) 

(𝛼 + 𝜆 + 𝜇𝐿 + 𝜇0𝐻0
2)𝑢1,12 + 𝜇𝐿𝑢2,11 + (𝜆 + 2𝜇𝑇 + 𝜇0𝐻0

2)𝑢2,22 − 𝑚(𝜆 + 𝛼)𝑢1,1 −  
−𝑚(𝜆 + 2𝜇𝑇)𝑢2,2 = {𝜌 + 𝜀0𝜇0

2𝐻0
2}𝑢̈2 − 𝜌{𝛺2𝑢2 + 2𝛺𝑢̇1},  (5) 

𝜇𝐿𝑢3,11 + 𝜇𝑇𝑢3,22 − 𝑚𝜇𝑇𝑢3,2 = 𝜌𝑢̈3.  (6) 
We can restructure Eqs. (4)–(6) as follows: 

𝐺1𝑢1,11 + 𝐺2𝑢2,21 + 𝐺3𝑢1,22 − 𝑚𝐺4(𝑢1,2 + 𝑢2,1)  
= {{𝜌 + 𝜀0𝜇0

2𝐻0
2}𝑢̈1 − 𝜌(𝛺2𝑢1 + 2𝛺𝑢̇2)},   

(7) 

𝐺2𝑢1,12 + 𝐺3𝑢2,11 + 𝐺5𝑢2,22 − 𝑚𝐺6𝑢1,1 − 𝑚𝐺7𝑢2,2  
= {{𝜌 + 𝜀0𝜇0

2𝐻0
2}𝑢̈2 − 𝜌(𝛺2𝑢2 − 2𝛺𝑢̇1)},  (8) 

𝐺3𝑢3,11 + 𝐺4𝑢3,22 − 𝑚𝐺4𝑢3,2 = 𝜌𝑢̈3, (9) 
where 𝐺1 = (𝜆 + 2𝛼 + 4𝜇𝐿 − 2𝜇𝑇 + 𝛽 + 𝜇0𝐻0

2), 𝐺2 = (𝛼 + 𝜆 + 𝜇𝐿 + 𝜇0𝐻0
2), 𝐺3 = 𝜇𝐿,  

𝐺4 = 𝜇𝑇, 𝐺5 = (𝜆 + 2𝜇𝑇 + 𝜇0𝐻0
2), 𝐺6 = (𝜆 + 𝛼), 𝐺7 = (𝜆 + 2𝜇𝑇). 

If we employ 𝑚 = 0 into Eqs. (7)–(9), the homogeneous material characterizing the 
equations of the wave motion is recovered. In addition, let us define the following 
dimensionless variables: (𝑥1

′, 𝑥2
′, 𝑢1

′, 𝑢2
′) = 𝑐0(𝑥1, 𝑥2, 𝑢1, 𝑢2), 𝑐0

2, = 𝐺1/𝜌, (𝑡′) = 𝑐0
2𝑡,  

𝛺′ = 𝛺/𝑐0
2, 𝜎𝑖𝑗

′ = 𝜎𝑖𝑗/𝜌𝑐0
2, and employ them into Eqs. (7)–(9). Dropping the sign "  ′" from 

the equations results to the dimensionless form of the equations of the wave motion below: 
𝑢1,11 + 𝐺12𝑢2,21 + 𝐺13𝑢1,22 − 𝑚𝐺24(𝑢1,2 + 𝑢2,1)  

= {{1 +
𝜀0𝜇0

2𝐻0
2

𝜌
} 𝑢̈1 − 𝜌𝛺2𝑢1 − 2𝜌𝛺𝑢̇2}   

(10) 

𝐺12𝑢1,12 + 𝐺13𝑢2,11 + 𝐺15𝑢2,22 − 𝑚𝐺26𝑢1,1 − 𝑚𝐺27𝑢2,2  
= {{1 + 𝜀0𝜇0

2𝐻0
2/𝜌}𝑢̈2 − 𝜌𝛺2𝑢2 + 2𝜌𝛺𝑢̇1},  (11) 

𝐺13𝑢3,11 + 𝐺14𝑢3,22 − 𝑚𝐺24𝑢3,2 = 𝑢̈3,   
(𝐺12, 𝐺13, 𝐺14, 𝐺15, 𝐺16, 𝐵17) = ((𝐺2, 𝐺3, 𝐺4, 𝐺5, 𝐺6, 𝐺7)/𝐺1),  
(𝐺24, 𝐺26, 𝐺27) = (𝐺14, 𝐺16, 𝐺17)𝜌1/2/𝐺1

3/2
.   

(12) 

 
Analytical solution of the problem and normal mode analysis 
This section employs the eigenvalue approach also called the normal mode solution 
approach in the derivation of the analytical solutions of the displacement components and 
subsequently, the normal and shear stresses on the rotating inhomogeneous impedance-
corrugated fiber-reinforced solid. Thus, adopting the fact that this approach of normal 
mode analysis be applicable, the waves have their displacement components as: 

𝑢𝑖 = (𝑢̑𝑖(𝑥2))𝑒𝜔𝑡+𝑖𝑏𝑥1;  𝑖 = 1,2.  (13) 
Employing Eq. (13) into Eqs. (10)–(12), three ordinary differential equations (ODEs) 

in the 𝑥2 coordinates are given: 
(𝐺13𝐷2 − 𝑚𝐺24𝐷 − 𝑏2 − 𝑔1)𝑢̑1 + (𝑖𝐺12𝑏𝐷 − 𝑚𝐺24𝑏𝑖 − 2𝜌𝛺𝜔)𝑢̑2 = 0,  (14) 
(𝑖𝐺12𝑏𝐷 − 𝑚𝑏𝑖𝐺26 + 2𝜌𝛺𝜔)𝑢̑1 + (𝐺15𝐷2 − 𝑚𝐺27𝐷 − 𝐺13𝑏2 − 𝑔1)𝑢̑2 = 0,  (15) 
(𝐺14𝐷2 − 𝑚𝐺24𝐷 − (𝐺13𝑏2 + 𝜌𝜔2)𝑢̑3 = 0.  (16) 

In Eqs. (14)–(15), 𝑔1 = (1 + 𝜀0𝜇0
2𝐻0

2/𝜌)𝜔2 + 𝜌𝛺2). Note that 𝐷2 entails second 
order ordinary derivative with respect to 𝑥2. For non-trivial solution, Eqs. (14)–(15) 
produce 4th order ordinary differential equation below where 𝑢̑1, 𝑢̑2 becomes the 
dependent variables and 𝑥2 the independent variable. That is, the determinant of the 
coefficients of 𝑢̑1, 𝑢̑2 are equated to zero whereas (𝑢̑1, 𝑢̑2) ≠ 0. Observe that Eq. (16) is 
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uncoupled with Eqs. (14)–(15) and thus, we neglect it from forming the associated 
characteristic equation below. This is because we based our analysis in a plane geometry. 
However, its solution can be easily obtained by using quadratic formula: 

(𝑑11𝐷4 + 𝑑12𝐷3 + 𝑑13𝐷2 + 𝑑14𝐷 + 𝑑15)(𝑢̑1, 𝑢̑2) = 0, (17) 
where 𝑑1𝑖 , 𝑖 = 1,2,3,4,5 are complex coefficients which depends on the parameters of the 
solid half-space. Assume that 𝜂𝑖 , 𝑖 = 1,2,3,4 be positive roots of Eq. (17), thus, the normal 
mode analysis gives the solutions of 𝑢̑1, 𝑢̑2 as follows: 

(𝑢̑1,𝑢̑2) = (𝛫𝑛, 𝛫1𝑛)𝑒−𝜂𝑛𝑥2 ,   𝑛 = 1,2,3,4,  (18) 
where 𝛫𝑛 and 𝛫1𝑛 functions of the wavenumber 𝑏 in the direction of the horizontal 
coordinate 𝑥1 and 𝜔 is the complex frequency associated with the propagation of the 
wave. Utilizing Eq. (18) into Eqs. (10)–(11), a relation below is achieved: 

𝛫1𝑛 = 𝛨1𝑛𝛫𝑛,   
𝛨1𝑛 = (𝐺13𝜂𝑛

2 + 𝑚𝐺24𝜂𝑛 − 𝑏2 − 𝑔1 − (2𝜌𝛺𝜔 − 𝑖𝐺12𝑏𝜂𝑛 − 𝑚𝑏𝑖𝐺26),  
(𝐺15𝜂𝑛

2 − 𝐺13𝑏2 + 𝑚𝐺27𝜂𝑛 − 𝑔1 + (2𝜌𝛺𝜔 + 𝑖𝐺12𝑏𝜂𝑛 + 𝑚𝑏𝑖𝐺24), 𝑛 = 1,2,3,4.  
(19) 

Thus, the complete solutions of the displacements and stresses utilized for the 
model problem follows: 

𝑢1 = 𝛫𝑛𝑒−𝜂𝑛𝑥2+𝜔𝑡+𝑖𝑏𝑥1; 𝑢2 = 𝛨1𝑛𝛫𝑛𝑒−𝜂𝑛𝑥2+𝜔𝑡+𝑖𝑏𝑥1 ,  

𝜎11 = {𝑖𝑏 (1 − (
𝜇0𝐻0

2

𝐺1
)) − 𝜂𝑛𝛨1𝑛𝐺16} 𝛫𝑛𝑒−(𝜂𝑛+𝑚)𝑥2+𝜔𝑡+𝑖𝑏𝑥1 ,  

𝜎22 = {𝑖𝑏𝐺16 − 𝜂𝑛𝛨1𝑛𝐺17}𝛫𝑛𝑒−(𝜂𝑛+𝑚)𝑥2+𝜔𝑡+𝑖𝑏𝑥1,  
𝜎12 = (𝑖𝑏𝛨1𝑛 − 𝜂𝑛)𝐺13𝛫𝑛𝑒−(𝜂𝑛+𝑚)𝑥2+𝜔𝑡+𝑖𝑏𝑥1 , 
𝜎21 = 𝐺13(𝑖𝑏𝛨1𝑛 − 𝜂𝑛)𝛫𝑛𝑒−(𝜂𝑛+𝑚)𝑥2+𝜔𝑡+𝑖𝑏𝑥1 , 𝑛 = 1,2,3,4. 

(20) 

 
Impedance-corrugated conditions of the half-space and dispersions of 
Rayleigh waves 
This section is anchored on formulations and derivations associated with the impedance and 
corrugated conditions through which dispersion of Rayleigh wave on the fiber-reinforced 
half-space is explored. Following Asano [5], the corrugated boundary in trigonometric 
Fourier series denoted 𝑥2 = 𝜉(𝑥1) is such that𝜉(𝑥1) = 𝜉𝑙𝑒𝑖𝑙𝑏𝑥1 + 𝜉−𝑙𝑒

−𝑖𝑙𝑏𝑥1 , 
𝑙 = 1,2,3,4, … , where 𝜉𝑙 and 𝜉−𝑙 gives the Fourier expansion coefficients and 𝑙 is the series 
expansion order. Asano represented the parameters 𝑎, 𝐹𝑙 and 𝐼𝑙 in the form 𝜉1

± =
𝑎

2
, 

𝜉𝑙
± =

𝐹𝑙+𝐼𝑙

2
, 𝑙 = 2,3 …, such that 𝜉(𝑥1) = 𝑎 𝑐𝑜𝑠 𝑏 𝑥1 + 𝐹2 𝑐𝑜𝑠 2 𝑏𝑥1 + 𝐼2 𝑠𝑖𝑛 2 𝑏𝑥1 + ⋯ +

+𝐹𝑙 𝑐𝑜𝑠 𝑙 𝑏𝑥1 + 𝐼𝑙 𝑠𝑖𝑛 𝑙 𝑏𝑥1; 𝐹𝑙 and 𝐼𝑙 gives the Fourier cosine and sine Fourier coefficients, 
respectively, and through which the corrugated boundary surface in cosine terms by Asano 
become 𝜉(𝑥1) = 𝑎 𝑐𝑜𝑠 𝑏 𝑥1. 𝑎 denote the constant amplitude of the corrugation and 𝑏 is 
wavenumber such that 2𝜋/𝑏 gives the wavelength. However, we are interested in variable 
amplitudes of corrugation of the boundary of the material such that the wavelength of the 
wave for the corrugated surface equal 𝜋/𝑏. This is actually half of the wavelength for a non-
variable or uniform amplitude of the wave as given by Asano [5]. For this to occur, we need 
to redefine the amplitude of the corrugated surface such that 𝜉̄1

± = (𝑎 + 𝑐𝑥1)/2, and  
𝜉̄(𝑥1) = 𝜉̄𝑙𝑒

𝑖𝑙𝑏𝑥1 + 𝜉−𝑙𝑒
−𝑖𝑙𝑏𝑥1 ,  𝑙 = 1,2,3,4, . .., through which we can obtain 

𝜉̄(𝑥1) = (𝑎 + 𝑐𝑥1) 𝑐𝑜𝑠 𝑏 𝑥1 + 𝐹2 𝑐𝑜𝑠 2 𝑏𝑥1 + 𝐼2 𝑠𝑖𝑛 2 𝑏𝑥1+. . . +𝐹𝑙 𝑐𝑜𝑠 𝑙 𝑏𝑥1 + 𝐼𝑙 𝑠𝑖𝑛 𝑙 𝑏𝑥1.  
Here, 𝜉𝑙

± = (𝐹𝑙 + 𝐼𝑙)/2, 𝑙 = 2,3. .. Subsequently, we then assume the corrugated 
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surface boundary to be in the form of cosine term 𝜉(𝑥1) = (𝑎 + 𝑐𝑥1) 𝑐𝑜𝑠 𝑏 𝑥1. Here, 
(𝑎 + 𝑐𝑥1) become the variable amplitudes of the corrugated surface and 𝑏the wave 
number. Also, 𝑎, 𝑐 are terms associated with amplitudes such that if 𝑐 = 0, we recover the 
amplitude associated with Asano [5] model. To visualize these scenarios and its 
geometry, we illustrate 𝜉(𝑥1) = 𝑎 𝑐𝑜𝑠 𝑏 𝑥1 with uniform or constant amplitude of 
corrugation; 𝜉̄(𝑥1) = (𝑎 + 𝑐𝑥1) 𝑐𝑜𝑠 𝑏 𝑥1 and its derivative – 𝜉 ′̄11 𝑠𝑖𝑛 𝑏1 𝑐𝑜𝑠 𝑏1 with variable 
amplitudes of corrugation graphically in Fig. 1, respectively: 

 
(a) 

 

(b) 

 
 (c) 

 
 

Fig. 1. (a) Uniform amplitude of corrugation; (b) variable amplitude of corrugation; 
(c) Rate of change of (b) with respect to 𝑥1 

 
(a) Homogenous  boundary conditions on the impedance, considering corrugated fibre-
reinforced inhomogeneous material: 𝑢1 = 0, 𝑢2 = 0, at 𝑥2 = 𝜉(𝑥1), for all 𝑥1 coordinate 
and at any time t. Conditions on stresses w.r.t 𝑥2 = 𝜉̄(𝑥1) gives the following:  
𝜎22 − 𝜉 ′̅(𝑥1)𝜎21 + 𝜎22 + 𝜔𝑍2𝑢2 = 0, that is 𝜎22 + 𝜎22 − 𝜉 ′̅(𝑥1)𝜎21 + 𝜔𝑍2𝑢2 = 0,  
𝜎22 + 𝜇0𝐻0

2(𝑢1,1 + 𝑢2,2) − 𝜉 ′̅(𝑥1)𝜎21 + 𝜔𝑍2𝑢2 = 0, where 𝜎22 = 𝜇0𝐻0
2(𝑢1,1 + 𝑢2,2), gives 

Maxwell’s additional  stress on the fibre-reinforced inhomogeneous material, Abd-Alla et al. [2], 
Anya et al. [35,36] and Azhar et al. [39]. The tangential stress condition or shear stress 
follows: 𝜎12 − 𝜉 ′̅(𝑥1)𝜎11 + 𝜔𝑍1𝑢1 = 0 for all 𝑥1 coordinate and at any time t. 
(b) Inhomogeneous boundary conditions on the impedance, considering corrugated fibre-
reinforced inhomogeneous material: 𝑢1 = 0, 𝑢2 = 0, at 𝑥2 = 𝜉(𝑥1), for all 𝑥1 coordinate 
and at any time t. Conditions on stresses w.r.t 𝑥2 = 𝜉(𝑥1) gives the following:  
𝜎22 − 𝜉 ′̅(𝑥1)𝜎21 + 𝜎22 + 𝜔𝑍2𝑢2 = 0 that is 𝜎22 + 𝜎22 − 𝜉 ′̅(𝑥1)𝜎21 + 𝜔𝑍2𝑢2 = 0,  
𝜎22 + 𝜇0𝐻0

2(𝑢1,1 + 𝑢2,2) − 𝜉 ′̅(𝑥1)𝜎21 + 𝜔𝑍2𝑢2 = 0, where 𝜎̄22 = 𝜇0𝐻0
2(𝑢1,1 + 𝑢2,2), gives 

Maxwell’s additional  stress on the fibre-reinforced inhomogeneous material, Abd-Alla et al. [2], 
Anya et al. [35,36] and Azhar et al. [39]. The tangential stress condition or shear stress 
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follows: 𝜎12 − 𝜉 ′̅(𝑥1)𝜎11 + 𝜔𝑍1𝑢1 = 0 for all 𝑥1 coordinate and at any time t. 
In (b) above, 𝑍̄1and 𝑍̄2are the impedance parameters, Anya et al. [35,36] and Ailawalia et al. [40]. 
We assume that these impedance parameters 𝑍̄1and 𝑍̄2are inhomogeneous. This is such 
that (𝑍̄1, 𝑍̄2) = (𝑍1, 𝑍2)𝑒−𝑚𝑥2 . But note that 𝑍1, 𝑍2are homogeneous at the boundary of (a). 
Hence, these assumptions imply the following two sets of four equations from (a) and (b) 
above, respectively. They are presented below as (c) and (d), respectively. 
(c) Homogenous boundary conditions on the impedance considering fiber-reinforced 
inhomogeneous material: 

𝛫𝑛 = 0,  (21) 
𝛨1𝑛𝛫𝑛 = 0,  (22) 
{𝑖𝑏𝐺16 − 𝜂𝑛𝛨1𝑛𝐺17}𝑒−(𝜂𝑛+𝑚)𝜉̄(𝑥1)𝛫𝑛 + [(𝑎 + 𝑐𝑥1)𝑏 𝑠𝑖𝑛 𝑏 𝑥1 − 𝑐 𝑐𝑜𝑠 𝑏 𝑥1]{(𝑖𝑏𝛨1𝑛 −

−𝜂𝑛)𝐺13} ×× 𝑒−(𝜂𝑛+𝑚)𝜉̄(𝑥1)𝛫𝑛 + {𝜇0𝐻0
2(𝑖𝑏 − 𝜂𝑛𝛨1𝑛)}𝑒−(𝜂𝑛+𝑚)𝜉̄(𝑥1)𝛫𝑛 +

+{𝜔𝛨1𝑛𝑍2𝛫𝑛} = 0,   
(23) 

{{𝑖𝑏𝛨1𝑛 − 𝜂𝑛}𝐺13 + [(𝑎 + 𝑐𝑥1)𝑏 𝑠𝑖𝑛 𝑏 𝑥1 − 𝑐 𝑐𝑜𝑠 𝑏 𝑥1]{𝑖𝑏(1 − (𝜇0𝐻0
2/𝐺1)) −

−𝜂𝑛𝛨1𝑛𝐺16}} × 𝛫𝑛𝑒−(𝜂𝑛+𝑚)𝜉̄(𝑥1) + {𝜔𝑍1}𝛫𝑛 = 0.  
(24) 

(d) Inhomogenous boundary conditions on the impedance considering fiber-reinforced 
inhomogeneous material: 

𝛫𝑛 = 0,  (25) 
𝛨1𝑛𝛫𝑛 = 0,  (26) 
{𝑖𝑏𝐺16 − 𝜂𝑛𝛨1𝑛𝐺17}𝑒−𝜂𝑛𝜉̄(𝑥1)𝛫𝑛 + [(𝑎 + 𝑐𝑥1)𝑏 𝑠𝑖𝑛 𝑏 𝑥1 − 𝑐 𝑐𝑜𝑠 𝑏 𝑥1]{(𝑖𝑏𝛨1𝑛 −

−𝜂𝑛)𝐺13}𝑒−𝜂𝑛𝜉̄(𝑥1)𝛫𝑛 + {𝜔𝛨1𝑛𝑍2𝛫𝑛 + 𝜇0𝐻0
2(𝑖𝑏 − 𝜂𝑛𝛨1𝑛)}𝑒−𝜂𝑛𝜉̄(𝑥1)𝛫𝑛 = 0,   

(27) 

{{𝑖𝑏𝛨1𝑛 − 𝜂𝑛}𝐺13𝛫𝑛 + [(𝑎 + 𝑐𝑥1)𝑏 𝑠𝑖𝑛 𝑏 𝑥1 − 𝑐 𝑐𝑜𝑠 𝑏 𝑥1]{𝑖𝑏(1 − (𝜇0𝐻0
2/𝐺1)) −

−𝜂𝑛𝛨1𝑛𝐺16}𝛫𝑛 + {𝜔𝑍1}}𝛫𝑛𝑒−𝜂𝑛𝜉̄(𝑥1) = 0,  𝑛 = 1,2,3,4. 
(28) 

For non-trivial solutions in (a) and (b), the determinants |𝛫𝑖𝑗| = 0,   𝑖 = 𝑗 = 1,2,3,4 
and for 𝛫𝑛 ≠ 0, gives the novel respective two dispersion relations |𝛻| of the Rayleigh 
wave for: (a) homogeneous conditions on the impedance and (b) inhomogeneous 
conditions on the impedance. 
 
Computational results and Discussion 
This section devotes wholly on depicting our analytical solution graphically. To achieve 
this, we employ the numerical fiber-reinforced constants as given by Othman et al. [41] 
and some other parameters below to demonstrate the variations or effects of the physical 
quantities of impedance, rotation, inhomogeneity, magnetic fields, variable amplitudes 
of corrugated parameters and the wavenumber on the two dispersions of Rayleigh wave 
considering when the impedance applied on the material is homogeneous and when the 
impedance applied is inhomogeneous. It should be noted that the fiber-reinforced solid 
half-space is inhomogeneous: 𝜆 = 7.59 · 109 kg m-1s-2, 𝜇𝐿 = 2.45 · 109 kg m-1s-2, 
𝜇𝑇 = 1.89 · 109 kg m-1s-2, 𝜌 = 7.8 · 103 kg m-3, 𝛼 = -1.28 · 109 kg m-1s-2, 𝛽 = 0.32 · 109 kg m-

1s-2, 𝜔 = (0.02 + i) rad/s, a = 0.29. 
Figure 2 entails the variation of magnetic field 𝐻0 on the dispersions |𝛻| of Rayleigh 

wave as against 𝑥1 coordinate, considering (a) homogeneous impedance and (b) 
inhomogeneous impedance on an inhomogeneous solid half-space such that all other 
physical parameters of impedance 𝑍𝑖 ,  𝑖 = 1,2, rotation 𝛺 of the medium, 
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inhomogeneity𝑚, corrugated parameters (a, c and b) i.e. parameters linked with the 
variable amplitudes of corrugation and wavenumber, respectively, are assumed to be in 
fixed state on the inhomogeneous fiber-reinforced solid half-space. Hence, increase in 
the magnetic field 𝐻0 results to a corresponding increase in the behavior of the 
dispersions |𝛻|. In fact, the minima amplitudes of the dispersions |𝛻| are attained when 
we neglect the magnetic field on the material. While the maxima amplitudes of the 
dispersions |𝛻| are attained at 𝑥1 = 0.7 and 𝑥1 = 0.6 for an increasing magnetic field 𝐻0 

application especially on Fig. 2(a) and Fig. 2(b), respectively. Also, we observe that the 
dispersion relations |𝛻| decrease for an extended 𝑥1 coordinate such that the behavior of 
the dispersions |𝛻| due to (a) homogeneous impedance and (b) inhomogeneous 
impedance on an inhomogeneous solid half-space are alike in every aspect except in their 
respective dispersion amplitudes and a difference in behavior when 𝑥1 ≥ 1.4. Physically, 
this has shown that the presence of external magnetic field influences the wave 
propagation especially as a push to the material characterizations and thus, impacts the 
wave attenuation and velocity of propagation. Hence, low magnetic fields on the model 
tend to give reduced influences of propagation as observed. 

 
(a) 

 

(b) 

 
 

Fig 2. Variation of magnetic field 𝐻0(𝐴/𝑚) on the dispersions |𝛻| of Rayleigh wave against 𝑥1, considering 
(a) homogeneous impedance; (b) inhomogeneous impedance on an Inhomogeneous solid half-space 

 
(a) 

 

(b) 

 
 

Fig. 3. Variation of inhomogeneous parameter 𝑚 on the dispersions |𝛻| of Rayleigh wave against 𝑥1, considering 
(a) homogeneous impedance and (b) inhomogeneous impedance on an Inhomogeneous solid half-space 

 

Consequently, Fig. 3 demonstrates the effect of the inhomogeneous parameter 𝑚on 
the dispersions |𝛻| of Rayleigh wave against𝑥1coordinate, considering (a) homogeneous 
impedance and (b) inhomogeneous impedance on an inhomogeneous solid half-space 
through a constant applications of the physical quantities of magnetic field 𝐻0, 
impedance 𝑍𝑖,  𝑖 = 1,2, rotation 𝛺 of the medium, corrugated parameters (a, c and b) i.e. 
parameters associated with the variable amplitudes of corrugation and wavenumber, 
respectively, on the material. 
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This is such that an increase in the inhomogeneity 𝑚 result to a sequential decrease 
in behavior of the dispersion relation |𝛻| of the wave due to homogeneous impedance 
that is Fig. 3(a) while the dispersion |𝛻| due to inhomogeneous impedance; Fig. 3(b) 
possess negligible behavior. That is, the minima value of dispersion due to the 
homogeneous impedance is attained when the inhomogeneity 𝑚 increase. However, both 
considerations; Fig. 3(a) and Fig. 3(b) attain their maxima values of dispersions |𝛻|close 
to 𝑥1 = 0.6 and 𝑥1 = 0.5, respectively. For extended length of the material both 
dispersions decreases whilst noticing a difference in behavior for 𝑥1 ≥ 1.4 and the short 
dispersion amplitudes of the Rayleigh wave due to homogeneous impedance as 
compared with the dispersion amplitudes of the Rayleigh wave due to inhomogeneous 
impedance. This could be physically attributed to the characterizations of the solid half-
space owing to fiber-reinforcement, homogeneous impedance and inhomogeneous 
impedance considerations on the inhomogeneous fiber-reinforced. Thus, it suffices to 
infer that the impact of the wave velocity and attenuation on the homogeneous 
characterization of the material would be pronounced as compared with the 
inhomogeneous material for the considered same physical parameters of the model. 

More so, Fig. 4 depicts the effect of rotation 𝛺 of the medium on the dispersions|𝛻| 

of Rayleigh wave against 𝑥1 coordinate, considering (a) homogeneous impedance and (b) 
inhomogeneous impedance on an inhomogeneous solid half-space especially when the 
quantities of magnetic field 𝐻0, impedance 𝑍𝑖 ,  𝑖 = 1,2, inhomogeneous parameter 𝑚, 
corrugated parameters (𝑎, 𝑐) i.e. parameters associated with the variable amplitudes of 
corrugation and wavenumber 𝑏 are unchanged on the solid half-space. 

 
(a) 

 

(b) 

 
 

Fig. 4. Variation of rotation 𝛺,  rad/s on the dispersions |𝛻| of Rayleigh wave against 𝑥1, considering  
(a) homogeneous impedance and (b) inhomogeneous impedance on an Inhomogeneous solid half-space 

 
We observe that both conditions possess mixed behaviors in some domains of the 

Rayleigh wave dispersion profile when the rotation increase. That is, the two dispersions 
tend to move in upward trend for an increase in rotation within the domain 0 ≤ 𝑥1 < 1 
whilst possessing mixed behavior (increase and decrease) and after which the increase 
ensues again in a minimal manner, sequentially. However, for an increase in rotation, an 
outright decrease in behavior equally occur within the domain 0.95 < 𝑥1 < 1.25  
in Fig. 3(b). Near 𝑥1 = 0.55 and 𝑥1 = 0.45 gives the positions of the maxima values of the 
dispersions of the Rayleigh wave on the material for Fig. 3(a) and Fig. 3(b), respectively. 
Hence, we can infer that the maxima values occur when the rotation is large on the 
material. And again, the amplitude of the dispersion due to inhomogeneous impedance 
is large as compared with the amplitude of the dispersion due to homogeneous 
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impedance, i.e., both has very close behavior aside their amplitudes and the behavior 
around the extended length of the material say from 𝑥1 > 1.4. Realistically and across 
the length of the material, it is evident that the wave modulation is being impacted by 
rotation of the medium in a higher proportion. 

Nevertheless, Fig. 5 connotes the impact of 𝑎 associated with the variable 
amplitude of corrugation on the dispersions |𝛻| of Rayleigh wave as against 𝑥1 coordinate, 
considering (a) homogeneous impedance and (b) inhomogeneous impedance on the 
inhomogeneous medium. This is feasible only on the constant application of the physical 
parameters of rotation 𝛺, magnetic field 𝐻0, impedance 𝑍𝑖 ,  𝑖 = 1,2, inhomogeneous 
parameter 𝑚, corrugated parameter 𝑐 (parameter associated with the variable amplitudes 
of corrugation) and wavenumber 𝑏on the inhomogeneous solid half-space. Following 
this, Fig. 5(a) and Fig. 5(b) decrease sequentially in the domains 0.5 < 𝑥1 ≤ 2 and  
0.6 < 𝑥1 ≤ 1.1, respectively when the parameter 𝑎 associated with the variable amplitude 
of corrugation increase. We equally note mix behavior in both cases in the domain  
0 < 𝑥1 ≤ 0.1. Fig. 5(b) increases again for an increase in 𝑎 from 𝑥1 > 1.3 before mix 
behavior ensued. More so, the maxima profiles of the dispersions in Fig. 5(a) and Fig. 5(b) 
of the Rayleigh wave were attain close to 𝑥1 = 0.35 and 𝑥1 = 0.3, respectively, especially 
when 𝑎 associated with the variable amplitude of corrugation increase. Generally, the 
dispersions of the wave tend to decrease along the length of the material as the wave 
propagate. We note that both cases have differences in dispersion amplitudes on the 
considered length of the solid medium and as well as in behaviors for extended length 
of the material. 

 
(a) 

 

(b) 

 
 

Fig. 5. Variation of 𝑎 associated with the variable amplitude of corrugation on the dispersions |𝛻|  
of Rayleigh wave against 𝑥1, considering (a) homogeneous impedance and (b) inhomogeneous impedance 

on an Inhomogeneous solid half-space 
 
In a similar analysis, Fig. 6 demonstrates the effect of 𝑐 associated with the variable 

amplitude of corrugation on the dispersions |𝛻| of Rayleigh wave as against 𝑥1 coordinate, 
considering (a) homogeneous impedance and (b) inhomogeneous impedance on the 
inhomogeneous medium. This is such that the physical parameters of rotation 𝛺, 
magnetic field 𝐻0, impedance 𝑍𝑖,  𝑖 = 1,2, inhomogeneous parameter 𝑚, corrugated 
parameter 𝑎 (parameter associated with the variable amplitudes of corrugation) and 
wavenumber 𝑏 remain steady on the material. Hence, we note that parameter 𝑐 associated 
with the variable amplitude of corrugation gradually increase the dispersions of the 
Rayleigh wave when increased in both cases especially within the domain 0 < 𝑥1 ≤ 0.8 
for Fig. 6(a) and 0 < 𝑥1 ≤ 1.4 for Fig. 6(b), and after which a very gradual decrease and  
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a uniform behavior, respectively, occurs. In addition, for the dispersion due to 
homogeneous impedance, the parameter 𝑐decrease the dispersion relations of the 
Rayleigh wave in the domain 0.8 < 𝑥1 ≤ 2 when increased whilst observing uniform 
behavior for the inhomogeneous impedance case when 𝑥1 > 1.4. More so, for an increase 
in 𝑐 associated with the variable amplitude of corrugation, the maxima profiles of the 
dispersions of the Rayleigh wave were recorded close to 𝑥1 = 0.49. Thus, we can deduce 
that the dispersions of the wave tend to decrease along the length of the material as the 
wave propagate whilst noting that both cases have differences in dispersion profiles in 
terms of their amplitudes and behaviors at the extended length of the coordinate. 

 
(a) 

 

(b) 

 
 

Fig. 6. Variation of 𝑐 associated with the variable amplitude of corrugation on the dispersions |𝛻| of 
Rayleigh wave against 𝑥1, considering (a) homogeneous impedance and (b) inhomogeneous impedance 

on an Inhomogeneous solid half-space 
 
Be that as it may, Fig. 7 depicts the impact of the wavenumber 𝑏 (associated with 

the corrugation) on the dispersions |𝛻| of Rayleigh wave as against 𝑥1 coordinate, 
considering (a) homogeneous impedance and (b) inhomogeneous impedance on the 
inhomogeneous medium when the parameters of rotation 𝛺, magnetic field 𝐻0, 
impedance 𝑍𝑖,  𝑖 = 1,2, inhomogeneous parameter 𝑚, corrugated parameters (𝑎, 𝑐) 
(parameters associated with the variable amplitudes of corrugation) are in fixed state on 
the medium. 

We deduce that the dispersion profiles of the Rayleigh wave in both cases show 
some outright mixed behaviors (uniform, decrease and increase) in certain domains of the 
horizontal coordinate 𝑥1 when the wavenumber 𝑏 increase. However, an outright 
downward trend ensues in the domain 0.5 < 𝑥1 ≤ 1.8 in Fig. 7(b) when the wavenumber 
 

(a) 

 

(b) 

 
 

Fig. 7. Variation of wavenumber 𝑏 associated with the corrugation on the dispersions |𝛻| of Rayleigh 
wave against 𝑥1, considering (a) homogeneous impedance and (b) inhomogeneous impedance on an 

Inhomogeneous solid half-space 
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𝑏 increase. The maxima values in Fig. 7(a) and Fig. 7 (b) occur near 𝑥1 = 0.6 and 𝑥1 = 0.5, 
respectively while the minima values of the dispersions occur when 𝑏 is large. When 
𝑏 = 0.5 and along the extended length of the material, there exist gradual upward trend 
different from the initial behavior of the dispersions. We equally observe as in Fig. 6, that 
Fig. 7 possess reduce amplitude of dispersion for the dispersion due to homogeneous 
impedance as compared with the amplitude of dispersion occasioned by the 
inhomogeneous impedance. This can be attributed to the homogeneous impedance and 
inhomogeneous impedance considerations on the inhomogeneous fiber-reinforced solid. 
Thus, owing to the considered geometry, it is inferred that the number of cycles or 
wavelengths per unit of distance (wave number) has huge influence on the wave 
propagation on the material such that mixed occurrences of the Rayleigh wave were 
recorded across certain positions on the material. 

In a different vein, Fig. 8 depicts the effect of impedance 𝑍2 on the dispersions|𝛻|of 
Rayleigh wave as against𝑥1coordinate, considering (a) homogeneous impedance and (b) 
inhomogeneous impedance on the inhomogeneous medium when the parameters of 
wavenumber 𝑏, rotation 𝛺, magnetic field 𝐻0, impedance 𝑍𝑖,  𝑖 = 1, inhomogeneous 
parameter𝑚, corrugated parameters (𝑎, 𝑐) (parameters associated with the variable 
amplitudes of corrugation) are unchanged on the solid medium. Figure 8 shows that 
increase in the impedance 𝑍2 yield negligible behavior in terms of increase and decrease 
on both considered dispersions of Fig. 8(a) and Fig. 8(b), respectively. However, they 
dispersions in both cases are uniformly distributed in this instance of increase in 𝑍2. They 
attain maxima values close to 𝑥1 = 0.6 and 𝑥1 = 0.5, respectively at any of the given 𝑍2. 
This can be attributed to the material exhibition where the resistant-like phenomena of 
the impedance is felt or witnessed. However, Fig. 8(a) has a reduced dispersion amplitude 
as compared with Fig. 8(b). This can be attributed to the homogeneous impedance and 
inhomogeneous impedance considerations on the inhomogeneous fiber-reinforced 
medium. 

 
(a) 

 

(b) 

 
 

Fig. 8. Variation of impedance 𝑍2 on the dispersions |𝛻| of Rayleigh wave against 𝑥1, considering  
(a) homogeneous impedance and (b) inhomogeneous impedance on an Inhomogeneous solid half-space 

 
In a similar vein, Fig. 9 demonstrates the effect of impedance 𝑍1 on the 

dispersions|𝛻| of Rayleigh wave as against 𝑥1 coordinate, considering (a) homogeneous 
impedance and (b) inhomogeneous impedance on the inhomogeneous medium when the 
parameters of wavenumber 𝑏, rotation 𝛺, magnetic field 𝐻0, impedance 𝑍𝑖,  𝑖 = 2, 
inhomogeneous parameter 𝑚, parameters associated with the variable amplitudes of 
corrugation (𝑎, 𝑐) remain constantly applied on the solid. In the light of this, Fig. 9 shows 
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that increase in the impedance 𝑍1 yield negligible behavior on both considered 
dispersions of (a) and (b), respectively in terms of decrease an increase. They attain 
maxima values close to 𝑥1 = 0.6 and 𝑥1 = 0.5, respectively at any of the given 𝑍1. This 
can be attributed to the material characteristics where a resistant-like phenomena of the 
impedance is witnessed. However, Fig. 9(a) has a reduced dispersion amplitude as 
compared with Fig. 9(b). This can be attributed to the homogeneous impedance and 
inhomogeneous impedance considerations on the inhomogeneous fiber-reinforced 
medium. We can say that this analysis on 𝑍1 is alike to analysis on Fig. 8 with uniform 
distributed dispersions at this instance. 
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(b) 

 
 

Fig. 9. Variation of impedance 𝑍1 on the dispersions |𝛻| of Rayleigh wave against 𝑥1, considering  
(a) homogeneous impedance and (b) inhomogeneous impedance on an Inhomogeneous solid half-space 

 
Conclusions 
The present investigation aimed at exploring a mathematical model and its analysis, 
occasioned by the dispersion relation of Rayleigh wave in a rotating inhomogeneous half-
space with variable corrugation amplitudes and impedance conditions under magnetic 
influence. The impedance conditions were made to be in two characterizations i.e., 
homogeneous impedance and inhomogeneous impedance conditions at the boundary of 
the material. We employed the constitutive relations for a fiber-reinforced material 
alongside an exponentially decaying function of the material parameters characterizing 
the inhomogeneity, rotation of the medium and magnetism in deriving the equations of 
motion of the wave on the material. Through this, the analytical solution of the model 
was derived using the normal mode analysis. Subsequently, using the corrugated-
impedance boundary conditions, the two dispersion relations of Rayleigh wave for 
homogeneous impedance and inhomogeneous impedance conditions were formulated. 
The graphical depictions of these two dispersion relations of Rayleigh wave where the 
variations of the physical parameters of rotation, inhomogeneity, magnetic field, 
impedance, wavenumber and variable amplitudes of corrugation parameters were carried 
out are illustrated. This is such that: 
1. An increase in the magnetic field 𝐻0 give rise to increase in the behavior for the two 
dispersion relations of the Rayleigh wave on the inhomogeneous fiber-reinforced 
medium, that is, dispersion due to inhomogeneous impedance and dispersion due to 
homogeneous impedance increases for increase in 𝐻0. 
2. Increase in the inhomogeneity 𝑚 result to a sequential decrease in behavior of the 
dispersion relation of the wave due to homogeneous impedance while the dispersion due 
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to inhomogeneous impedance possesses negligible behavior at this instance. 
3. A larger portion of the dispersion profiles witnessed increase in behavior when the 
rotation 𝛺 increase. However, the rotation 𝛺 of the medium yielded mix behaviors on the 
dispersion relation of the Rayleigh wave especially in certain domains of the horizontal 
coordinate when increased. 
4. The parameter 𝑎 associated with the variable amplitude of corrugation caused both 
decreasing behavior and increasing behavior on both dispersion relations of the wave in 
certain domains of the horizontal coordinate especially when increased. While the 
parameter 𝑐 which is also associated with the variable amplitude of corrugation caused 
an upward trend on both dispersion relations of the Rayleigh wave when increased. This 
occurrence ensued especially to a larger extent in the domain of the horizontal coordinate 
where a very slight mix behavior occurs afterwards. In addition, for the dispersion due to 
homogeneous impedance, the parameter 𝑐decrease the dispersion relations of the 
Rayleigh wave in the domain 0.8 < 𝑥1 ≤ 2 when increased whilst observing uniform 
behavior for the inhomogeneous impedance case when 𝑥1 > 1.4. 
5. The wavenumber associated with the variable corrugated surfaces tend to cause a 
decrease in behavior to the dispersions of the waves to a large extent when increased 
while noting some mixed behaviors in both cases towards the extended part of the 
material. 
6. Impedance parameters, that is, both the normal and horizontal impedances behaved 
alike such that they pulled a resistant-like measure on the material by exhibiting a 
negligible impact when increased on the material in terms of increase and decrease. 
However, we can equally adduce that the dispersions in both cases were uniformly 
distributed in this instance. 

Thus, it is imperative to state that this model and its analysis invoke special cases 
found in the literature when the variable amplitude parameter 𝑐is neglected, i.e., at  
𝑐 = 0, models related to Asano [4] are gotten for constant or uniform amplitude of 
corrugation as occasioned in Fig. 1(a). Hence, we adduce that this study should be 
beneficial to the investigation and characterization of new and old materials, 
mathematics of wave phenomena cum solution, and the entire research community 
working in the directions similar to surface waves on solid materials. Also, the most 
immediate and realistic engineering applications where the joint interactions of Rayleigh 
wave, magnetic influences, rotation and fiber reinforcement becomes eminent or 
applicable is in the design and failure analysis of rotating machinery components 
designed from composite materials, like those in aerospace materials especially in rotor 
blades, non-destructive testing using surface waves, and making of piezo-magneto-
electric sensors and actuator technologies. 
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Nomenclatures 
𝑏 is wavenumber; 
𝑎,  𝑐 are parameters associated with variable amplitude of corrugation; 
𝜎𝑖𝑗 is stress tensor; 
𝜀𝑖𝑗 is strain tensor; 
𝑢𝑖 is displacement vector; 
𝛿𝑖𝑗 is Kronecker-Delta function; 
𝜆 is Lame’s constant; 
𝛼, 𝛽, (𝜇𝐿 − 𝜇𝑇) are fiber-reinforced parameters; 
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𝐹𝑖 is Magnetic force; 
𝜀0 is electric permeability; 
𝜇0 is Magnetic permeability; 
𝐻𝑖 is Magnetic vector field; 
𝛺 is Rotation parameter of the medium; 
𝜌 is density; 
𝑥𝑖 are coordinates; 
𝑍1,  𝑍2 are impedance parameters. 
 
Appendix 
𝑑11 = 𝐺13𝐺15;   
𝑑12 = −𝑚(𝐺15𝐺24 + 𝐺13𝐺27);  
𝑑13 = (−𝑏2𝑖2𝜌𝐺12

2 − 𝑏2𝜌𝐺15 − 𝜌𝜔2𝐺15 + 𝜌2𝛺2𝐺15 + 𝑚2𝜌𝐺24𝐺27 − 𝜔2𝐺15𝐻0
2𝜀0𝜇0

2 +  
+𝐺13(−𝜌𝜔2 + 𝜌2𝛺2 − 𝑏2𝜌𝐺13 − 𝜔2𝐻0

2𝜇0
2))/𝜌;  

𝑑14 = (𝑚(𝑏2𝑖2𝜌𝐺12𝐺26 + 𝐺24(𝜌𝜔2 − 𝜌2𝛺2 + 𝑏2𝑖2𝜌𝐺12 + 𝑏2𝜌𝐺13 + 𝜔2𝐻0
2𝜇0

2) + 
+𝐺27(𝜌(𝑏2 + 𝜔2 − 𝜌𝛺2) + 𝜔2𝐻0

2𝜀0𝜇0
2)))/𝜌;  

𝑑15 =
1

𝜌2 (𝑏2𝜌2𝜔2 + 𝜌2𝜔4 − 𝑏2𝜌3𝛺2 − 2𝜌3𝜔2𝛺2 + 4𝜌4𝜔2𝛺2 + 𝜌4𝛺4 − 2𝑏𝑖𝑚𝜌3𝜔𝛺𝐺26 + 

+𝑏𝑖𝑚𝜌2𝐺24(2𝜌𝜔𝛺 − 𝑏𝑖𝑚𝐺26) + 𝑏2𝜌𝜔2𝐻0
2𝜇0

2 + 𝜌𝜔4𝐻0
2𝜇0

2 − 𝜌2𝜔2𝛺2𝐻0
2𝜇0

2 + 𝜌𝜔4𝐻0
2𝜀0𝜇0

2 − 
 −𝜌2𝜔2𝛺2𝐻0

2𝜀0𝜇0
2 + 𝜔4𝐻0

4𝜀0𝜇0
4 + 𝑏2𝜌𝐺13(𝜌(𝑏2 + 𝜔2 − 𝜌𝛺2) + 𝜔2𝐻0

2𝜀0𝜇0
2)).   

 


