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ABSTRACT

A mathematical model investigating the dispersions of Rayleigh wave on an inhomogeneous rotating half-
space with magnetic field influence, impedance and variable amplitudes of corrugation is presented.
Normal mode approach and non-dimensionalization principles were employed to the equations of motion.
Derivations of the analytical solutions of the stresses and displacement components occasioned by the
wave on the material were achieved. Variable amplitudes of corrugation due to a linear function
incorporated as the amplitude of the trigonometric Fourier series and the impedance conditions enriches
the material characterizations and paved way in formulating the structure or nature of corrugation at the
boundary. Thus, dispersion relations of Rayleigh waves due to homogeneous impedance and
inhomogeneous impedance were analytically given and graphically depicted with the variations of the
physical parameters.
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Introduction

Mechanical wave propagation is dependent on the physical composition of materials.
Scientists in the fields of seismology and geophysical analysis usually devote and
maintain clear position in examining compositions associated with most materials before
employing them into structural and engineering constructions or applications. This is
largely pertinent to ensure quality occasioned by such materials through which waves
and in particular surface waves modulate. These materials are classed into two forms;
anisotropic and isotropic materials and following which homogeneous and
inhomogeneous characterization of the materials would ensue. Also, the inhomogeneity
of these materials hugely depends on the nature of the deformation which typically lies
in the form of growth or decay of the material parameters or other geometrical
considerations of the interacting material constants.

Furthermore, mathematics, physics, and geophysics scientists have maintained
constant researches in this field of solid mechanics by exploring and developing models that
could necessitate great insights about the behaviors of these materials when acted upon by
stress and other environmental factors. Given this, the consideration of just isotropic material
may not holistically define or describe exact continuum information in composites. Part of
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this line of thought yielded examination on anisotropic material exhibitions. Anisotropic
materials exist as composites, for instance, the Fiber-reinforced composites, and the
orthotropic materials, etc., to mention but a few, are highly regarded for engineering
applications due to their high positive mechanical properties. On this note, Spencer [1]
developed and presented a work that hinged on deformation of fiber-reinforced material
as a composite whose characterizations in terms of tensile strength, weightlessness
(lLeading to flexibility), and so on, endears them to various industrial applications.

In a different vein, fiber-reinforced composites, also, might not give definite results
in terms of its behavior if the environmental factors or other physical interacting
quantities like magnetic fields Abd-Alla et al. [2] or maybe rotation Schoenberg et al. [3]
surrounding it are not factored into the mathematical model equations characterizing a
particular phenomenon. This is solely because they have a way of giving near accurate
predictions of the model problem needed for insightful reach of decisions. Aside the
surrounding characterizations, researchers equally exploit other mechanical properties
such as the impedance [4], which act like a resistance to the motion of matter or acoustic
energy on a material alongside appropriate boundary conditions which could be planar
or non-planar like the corrugated boundary [5] to enrich the understating of some
complex mechanical structures and surface wave (Stoneley wave, Love wave and
Rayleigh wave) propagations along and across interfaces of materials. Hence, the basic
mechanical reasoning behind this design of corrugation is to positively enhance the
stiffness-to-weight ratio of the material by giving optimal geometric representation
rather than addition of more material. Thus, increase in bending stiffness, energy
absorption, and anisotropic behavior exhibitions cum buckling resistance are some of the
key principles behind corrugation of materials. While variable corrugation shapes or
geometries of different heights, or even hierarchical construction on materials, allows for
further enhancement and optimization of the mechanical properties of the material for a
particular performance needs.

In the foregoing, several authors have made contributions to further the
investigations associated with these corrugated-impedance boundary effects on materials
along with other interesting wave phenomena. Singh et al. [6] and Singh et al. [7,8]
worked on gP-wave at a corrugated interface between two different initial stress elastic
semi-infinite material, influence of corrugated boundary surfaces reinforcement,
hydrostatic stress, heterogeneity and anisotropy on Love type wave propagation and also
on the effect of loose bonding and corrugation on Rayleigh-type wave modulation. More
so, Das et al. [9] dealt with surface waves in an inhomogeneous material which included
gravity. Abd-Alla et al. [10] investigated impact of rotation on a non-homogeneous
infinite elastic cylinder of orthotropic material under magnetic influences.
Chattopadhyay et al. [11] opined the dispersion equation of Love wave based on
irregularity in the thickness of non-homogeneous crustal layer. Following this trend,
Roy et al. [12] worked on the propagation and reflection of plane waves in a rotating
magneto-elastic fiber-reinforced semi space with surface stress. Singh et al. [13],
Gupta et al. [14], Anya et al. [15-18] dealt on magnetic effects on surface waves in a
rotating non-homogeneous half-space with grooved-impedance boundary conditions and
non-local effects, respectively. Likewise, Maleki et al. [19] developed model tests on
determining the effect of various geometrical aspects on horizontal impedance function of
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surface footings. Chowdhury et al. [20] examined the dispersion of Stoneley waves through
the irregular common interface of two hydrostatic stressed MTI media. Singh et al. [21,22]
contributed their investigation on Rayleigh wave at an impedance boundary of an
incompressible micropolar and orthotropic solid, respectively while Sahu et al. [23] dealt
on the Mathematical analysis of Rayleigh waves at the imperfect boundary between
orthotropic and micropolar media. Giovannini [24] worked on the theory of dipole-
exchange spin-wave propagation in periodically corrugated films. And Rakshit et al. [25,26]
also proposed a stress analysis for the irregular surface of visco-porous piezoelectric half-
space subjected to a moving load. Subsequently, Gupta et al. [27] presented different
theories of thermo-elasticity under the Rayleigh wave propagation along an isothermal
boundary while Kaushal et al. [28] examined wave propagation under the influence of
voids and non-free surfaces in a micropolar elastic medium. Also, Sharma et al. [29] dealt
on the fractional strain analysis on reflection of plane waves at an impedance boundary of
non-local swelling porous thermo-elastic medium. Sharma et al. [30] further made input
on the effect of rotation for generalized thermo-viscoelastic Rayleigh-Lamb wave
propagating on materials while its counterpart Shaw et al. [31] utilized eigen function
expansion approach to examine Rayleigh wave propagation in an orthotropic magneto-
thermoelastic half-space. Moreover, Othman et al. [32-34] incorporated effects of
magnetic field on a rotating thermo-elastic medium with some other physical properties
like voids, relaxation time and reinforcement of fibers to study wave propagation on
structures. Thus, we observed keenly that all these investigations were associated with
singular or part investigations of the interacting physical quantities of rotation,
micropolar effects, homogeneity, inhomogeneity, magnetism, corrugation, etc., which fall
short as constituted in this present investigation where the corrugation effects possess
variable amplitudes whilst considering different ideas of impedance characterizations in
generating the dispersions of Rayleigh wave.

In view of the literatures posited above, the present investigation is geared towards
exploring a mathematical model and analysis on the dispersion of Rayleigh wave for a
rotating inhomogeneous fiber-reinforced solid with magnetic influences under impedance
and variable amplitudes of corrugation. Following this, the variable amplitude of
corrugation is conceived to be a linear function of the horizontal coordinate and
incorporated at the point of the constant amplitude using the Trigonometric Fourier series
cosine terms. The equations of motion were derived using the stress-strain relations of a
fiber-reinforced material through the fundamental governing laws of motion of Physics. In
addition, the analytical solution is developed by utilizing the eigenvalue method also called
normal mode method. We developed both the homogeneous and inhomogeneous
impedance conditions at the boundary via which the two dispersion relations of the
Rayleigh wave were analytically derived and presented. Graphical results depicting the
impact of the contributing physical parameters of inhomogeneity, rotation of the medium,
corrugation parameters (variable amplitude parameters), wavenumber, and magnetic effect
on the two dispersion relations of the Rayleigh wave due to homogeneous and
inhomogeneous impedance were achieved. We observe that particular cases found in the
literature can be obtained from our results as special cases especially when we neglect one
of the parameters associated with the variable amplitudes of corrugation leading to
constant or uniform amplitude of corrugation model.
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The mathematical model and formulations

In this section, we introduce the basic fields’ equations characterizing the mathematical
model. In line with this, the mathematical formulations of the model using the
constitutive equations of fiber-reinforced material in its homogeneous form as introduced
by Spencer [1] and the magnetic field effect, Abd-Alla et al. [2] and Anya et al. [35,36] are
given below:

0ij = Aewwij + 2ureij + a(ffmexmbis + excfif;) + 2(u — ur) (fifers + )

+fjfk€ki) + ﬁ(fkfmfkmfifj);i =j=k=m=1.23,

F, = woH§ (9,1 — EMUolly, €2 — Eolollz, 0)» 1 =123, (2)
where o;; denotes the stress tensor, g; prescribe the strain tensor, u; represents the
displacement vector, A stipulate the Lames constant, («, B, (u;, — pr)) are the fiber-reinforced
parameters, §;; entails the Kronecker-delta function; and F; implies the magnetic force such
that F; = (F;, F,, F;). However, the strain is equally defined to be mathematically
represented as ¢;; = %(ui,j +u;;) and f = (fy, fo, f3) such that f = (1,0,0) prescribe
the fiber-reinforced directions. H; is the magnetic vector field defined to be H; = Hyd;3 + h;,
h; =(0,0,—e), e = u;;, i = 1,2. Also, h; is induced magnetic field such that &, and p,
connotes the electric permeability and the magnetic permeability, as the case maybe,
owing to the Maxwell’s theory of electromagnetism. This model postulates its analysis in
2-D such that x;x,-plane becomes the plane of consideration and such that
hi(x1,x3,%x3) = —uy 6;3. Owing to all these formulations, the governing equations of
motion for the rotating Schoenberg et al. [3] homogeneous fiber-reinforced material
under magnetic field are thus, presented:

0ij; + F; = p{il; + Qu0; — Q%u; — 2,07} (3)

The parameters in Eq. (3) like the ¢;;,,, represents the Levi-Civita tensor (alternating
symbol) and £2 stipulates the rotation of the medium. Einstein summation indices are used
and where index after comma represents partial rate of change with respect to coordinate
and superscript dot stipulate partial rate of change with respect to time. Since our
formulation is making use of the deformation in the x;x,-plane, we take x; = 0 and
0(0,0,1) as the rotation (which purely involved the Coriolis and centrifugal forces arising
from a rotating coordinate frame) of the half-space about the x;-axis. It then means that
the displacements u; # 0 and u, # 0, for any change in plane and coordiantes of
consideration.

Furthermore, the material is originally presumed to be inhomogeneous but the
fiber-reinforced medium so presented in Eqg. (1) is homogeneous. It suffices that the
parameters of the homogeneous fiber-reinforced material be considered to decay or grow
such that the rate of the occurrence is proportional to its value at that instance. This
would ultimately introduce the inhomogeneity into the model. This is such that the elastic
module, elastic parameters, and density of the half-space take the representation:
(A a, g, b, B, p) = (Ao, Qo, Hros By Bos Po)e” 2, Khan et al. [37] and Munish et al. [38].
In the given proportionality above, m describes the inhomogeneity of the fiber-reinforced
material.

Thus, employing these inhomogeneous parameters into Eq. (1), the component
forms of the equations of motion of the wave are presented:
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A+ 2a+4p, —2ur + B + .“ng)ul,n +(@+2A+p + .Ung)uz,m + UL U 22 —

—mur (U, +Uz) = {p + goufH3Yily — pR*uy — 2011,},

(a+A+u, + Hng)ul,lz +uuz 1+ (A4 2ur + llng)uz,zz —md+ a)uy, —

—m(A + 2ur)uy, = {p + goug Ho}il, — p{Q%u, + 20143,

Hruz 11 + UrUs 2 — MUrUz z = PUs. (6)

We can restructure Egs. (4)-(6) as follows:

Giug11 + Gaup g + Galy pp — mG4(u1’2 + u2,1)

= {{p + eous HEYil, — p(Q%uy + 201,)},

Gouy1z + GalUp 11 + GsUy o — MGeUyy — MG Uy,

_ 22V 2., _ . (8)

= {{P + gougHytiip — p(2%u, Z-Qul)}’

G3uz 11 + GalUzzp — MGuUz, = plUs, )
where Gy = (A+ 2a + 4y, — 2ur + B + uoH?), G, = (a + A+ p, + uoH?), G5 =y,
Gy = Ur, Gs = (A + 2ur + toHg), Go = (A + @), G; = (A + 2ur).

If we employ m = 0 into Egs. (7)-(9), the homogeneous material characterizing the
equations of the wave motion is recovered. In addition, let us define the following
dimensionless variables: (x;', %y, u;’, uy") = co(xq, X, ug, up), c&,= G1/p, (t") = cit,
' =0/c§, o/; = 0;j/pci, and employ them into Egs. (7)-(9). Dropping the sign """ from
the equations results to the dimensionless form of the equations of the wave motion below:

Uy 11 + GraUz o1 + Gzl pp — mGz4(u1,2 + u2,1)

2772 1
_ {{1 + —80“:”0}111 — p%u, — 2pnu2} (10)
Gi2Uq,12 + Gi3Uz g1 + GisUzzp — MGy — MGy7UL 5

2192 ) s 2 : (11)
= {1 + eougHg/p}iy — pR°uy + 2p0iy},
Gi3Uz g1 + GialUs gy — MGyuUs, = Us,
(G12,G13,G14, Gys, Gi6, B17) = ((G2, G, Gy, Gs, Gg, G7) /G1), (12)

(G24, G26, G27) = (G14, Gy, G17)P1/2/G13/2-

Analytical solution of the problem and normal mode analysis

This section employs the eigenvalue approach also called the normal mode solution
approach in the derivation of the analytical solutions of the displacement components and
subsequently, the normal and shear stresses on the rotating inhomogeneous impedance-
corrugated fiber-reinforced solid. Thus, adopting the fact that this approach of normal
mode analysis be applicable, the waves have their displacement components as:
w; = (0 (x,))e®tbx; | = 1,2, (13)
Employing Eq. (13) into Egs. (10)-(12), three ordinary differential equations (ODEs)
in the x, coordinates are given:

(Gl3D2 - mGz4D - bZ - gl)ﬁ]_ + (lGlsz - mGz4bi - Zpﬂw)ﬁz - O, (14)
(lGlsz - mbi626 + an(l))al + (GlsDz - mGz7D - Gl3b2 - gl)ﬁz - O, (15)
(Gl4D2 - mGz4D - (Glgbz + pwz)ﬁg =0. (16)

In Egs. (14)-(15), g1 = (1 + gouiHZ/p)w? + pN?). Note that D? entails second
order ordinary derivative with respect to x,. For non-trivial solution, Egs. (14)-(15)
produce 4th order ordinary differential equation below where 4,7, becomes the
dependent variables and x, the independent variable. That is, the determinant of the
coefficients of @;, 7, are equated to zero whereas (i, #,) # 0. Observe that Eq. (16) is
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uncoupled with Egs. (14)-(15) and thus, we neglect it from forming the associated
characteristic equation below. This is because we based our analysis in a plane geometry.
However, its solution can be easily obtained by using quadratic formula:

(dy1D* + d,D3 + d13D? + di4D + dy5) (04, 1,) = 0, (17)
where dy;,i = 1,2,3,4,5 are complex coefficients which depends on the parameters of the
solid half-space. Assume that n;,i = 1,2,3,4 be positive roots of Eq. (17), thus, the normal
mode analysis gives the solutions of i, i, as follows:

(G 1y) = (Ky, Kip)e ™2, n =1,2,3,4, (18)
where K, and K;,, functions of the wavenumber b in the direction of the horizontal
coordinate x; and w is the complex frequency associated with the propagation of the
wave. Utilizing Eq. (18) into Egs. (10)-(11), a relation below is achieved:

Kin = HinKy,

Hin = (G13n3 + mGyany — b — g1 — (2p0w — iGy,bn, — mbiGy), (19)

(G1sn% — Gi3b? + mGyom, — g1 + 2pfw + iG1,bn, + MbiG,,), n = 1,2,3,4.

Thus, the complete solutions of the displacements and stresses utilized for the

model problem follows:
U = Kne—nnx2+wt+lbx1; U, = Hanne—nnx2+wt+lbx1’

2 .

o1 = {ib (1 h (%)) - 77nH1nG16} Kne_(n"+m)x2+wt+lbx1,
1

pz = {ibGyig — Ny HinG17}Kye = (Intmxztot+ibx,,

01z = (ibHyp — 1) Gy3Kpe™ (mtmxztotriba,

051 = G13(ibHy, — n,) K, e~ (IntmXatottibxy oy — 9 9 3 4.

Impedance-corrugated conditions of the half-space and dispersions of
Rayleigh waves

This section is anchored on formulations and derivations associated with the impedance and
corrugated conditions through which dispersion of Rayleigh wave on the fiber-reinforced
half-space is explored. Following Asano [5], the corrugated boundary in trigonometric
Fourier series denoted x, =&(x;) is such thaté(x;) = §elP*1 + & e~ibx1,
l=1,2,3,4,..,where & and ¢_; gives the Fourier expansion coefficients and [ is the series
expansion order. Asano represented the parameters a, F; and [; in the form E;—’ :%,
E;—r = %,l =2,3.. such that &(x;) =acosbx; +F,cos2bx; +1,sin2bx; + -+
+F; coslbx; + I;sinlbxy; F; and I; gives the Fourier cosine and sine Fourier coefficients,
respectively, and through which the corrugated boundary surface in cosine terms by Asano
become &(x,) = acos b x;. a denote the constant amplitude of the corrugation and b is
wavenumber such that 2w /b gives the wavelength. However, we are interested in variable
amplitudes of corrugation of the boundary of the material such that the wavelength of the
wave for the corrugated surface equal /b. This is actually half of the wavelength for a non-
variable or uniform amplitude of the wave as given by Asano [5]. For this to occur, we need
to redefine the amplitude of the corrugated surface such that & = (a + cx;)/2, and
E(xy) = EettP*1 & je7bx1 1 =1234,.. through which we can obtain
E(x;) = (a+ cxy) cosbxy + Fycos 2bxy + I, sin2 bxy+...+F, cos L bx, + I sin | bx;.
Here, E;—“ = (F,+1;)/2,1l = 2,3... Subsequently, we then assume the corrugated
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surface boundary to be in the form of cosine term &(x;) = (a + cx;) cos b x;. Here,
(a + cx;) become the variable amplitudes of the corrugated surface and bthe wave
number. Also, a, ¢ are terms associated with amplitudes such that if ¢ = 0, we recover the
amplitude associated with Asano [5] model. To visualize these scenarios and its
geometry, we illustrate &(x;) = acosbx; with uniform or constant amplitude of
corrugation; £(x;) = (a + cx;) cos b x; and its derivative — &115mb1¢osb1 with variable
amplitudes of corrugation graphically in Fig. 1, respectively:
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Fig. 1. (a) Uniform amplitude of corrugation; (b) variable amplitude of corrugation;
(c) Rate of change of (b) with respect to x;

(@) Homogenous boundary conditions on the impedance, considering corrugated fibre-
reinforced inhomogeneous material: u; = 0, u, = 0, at x, = &(x;), for all x; coordinate
and at any time t. Conditions on stresses w.rt x, = £(x;) gives the following:
—&'(x)0y1 + Gpp + WZyuy, =0,  that s 0y + Gap — E'(x1) 021 + wZyuy = 0,
022 + UoH§ (u1,1 + uz,z) — &'(x1)01 + wZu, = 0, Where G, = llng(um + uz,z)s gives
Maxwell’s additional stress on the fibre-reinforced inhomogeneous material, Abd-Alla et al. [2],
Anya et al. [35,36] and Azhar et al. [39]. The tangential stress condition or shear stress
follows: oy, — &' (x1)0y; + wZyu; = 0 for all x; coordinate and at any time t.
(b) Inhomogeneous boundary conditions on the impedance, considering corrugated fibre-
reinforced inhomogeneous material: u; = 0, u, = 0, at x, = &(x;), for all x; coordinate
and at any time t. Conditions on stresses w.r.t x, = &(x;) gives the following:
— &'(x))0y1 + Gy + WZyu, = 0 that is 0y, + Gy — &' (%) 091 + wWZyu, = 0,
a2 + toHF (Ur1 + Uz 2) — & (%) 021 + WZyu, = 0, Where 6,5 = poH§ (U141 + uy), gives
Maxwell’s additional stress on the fibre-reinforced inhomogeneous material, Abd-Alla et al. [2],
Anya et al. [35,36] and Azhar et al. [39]. The tangential stress condition or shear stress
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follows: oy, — &'(x1)01; + wZ;u; =0 for all x; coordinate and at any time t.
In (b) above, Z;and Z,are the impedance parameters, Anya et al. [35,36] and Ailawalia et al. [40].
We assume that these impedance parameters Z,;and Z,are inhomogeneous. This is such
that (Z,,Z,) = (Z,,Z,)e”™*2. But note that Z;, Z,are homogeneous at the boundary of (a).
Hence, these assumptions imply the following two sets of four equations from (a) and (b)
above, respectively. They are presented below as (c) and (d), respectively.

(c) Homogenous boundary conditions on the impedance considering fiber-reinforced
inhomogeneous material:

K, =0, (21)
H K, =0, (22)
{(ibGyg — NyHypGyy e~ MmtmECDK 4 [(a + cx;)bsinb x; — ¢ cos b x;]{(ibHyy, —

—1n) Gz} XX e~ tMECOK, + (o HE (ib — ny Hyy) Yo~ Ot mEGOE, 4 (23)

+{(1)H1nZ2Kn} = 0,
{{inln — NMn}Giz + [(a+ cx;)bsinbx; — ccos bx,|{ib(1 — (,uOHg/Gl)) -
~hnH1nG1e}} X Kne™0n+mEGD 4 (wZ,3K, = 0.

(d) Inhomogenous boundary conditions on the impedance considering fiber-reinforced
inhomogeneous material:

(24)

K, =0, (25)
Hi, K, =0, (26)
{ibGi — nnHlthU}e_”né(xl)Kn + [(a + cxy)bsinb x; — c cos b x, [{(ibHy, — 27)
—13) G} MM VK, + {wHypZ; Ky + ioHE (ib — 1 Hip) e MmOV, = 0,

{{ibHyy, — Nn}G13Ky + [(@ + cxq)b sinb x; — c cos b x1]{ib(1 — (uoH5/G1)) — 28)

—NpHinGr6}Ky + {0Z, }K,e @) = 0, 1 =1,2,3,4.

For non-trivial solutions in (a) and (b), the determinants |Kij| =0, i=j=1234

and for K,, # 0, gives the novel respective two dispersion relations |V| of the Rayleigh

wave for: (@) homogeneous conditions on the impedance and (b) inhomogeneous
conditions on the impedance.

Computational results and Discussion

This section devotes wholly on depicting our analytical solution graphically. To achieve
this, we employ the numerical fiber-reinforced constants as given by Othman et al. [41]
and some other parameters below to demonstrate the variations or effects of the physical
quantities of impedance, rotation, inhomogeneity, magnetic fields, variable amplitudes
of corrugated parameters and the wavenumber on the two dispersions of Rayleigh wave
considering when the impedance applied on the material is homogeneous and when the
impedance applied is inhomogeneous. It should be noted that the fiber-reinforced solid
half-space is inhomogeneous: A=7.59:10°kgmls?, u; =2.45-10°kg mis?
ur =189 -10°kgmis? p=78-10"kgm3, a =-1.28 - 10° kg mis?2, g =0.32 - 10° kg m’
152 w = (0.02 + i) rad/s, a = 0.29.

Figure 2 entails the variation of magnetic field H, on the dispersions |V| of Rayleigh
wave as against x; coordinate, considering (a) homogeneous impedance and (b)
inhomogeneous impedance on an inhomogeneous solid half-space such that all other
physical parameters of impedance Z; i = 1,2, rotation 2 of the medium,
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inhomogeneitym, corrugated parameters (a, ¢ and b) i.e. parameters linked with the
variable amplitudes of corrugation and wavenumber, respectively, are assumed to be in
fixed state on the inhomogeneous fiber-reinforced solid half-space. Hence, increase in
the magnetic field H, results to a corresponding increase in the behavior of the
dispersions |V|. In fact, the minima amplitudes of the dispersions |V| are attained when
we neglect the magnetic field on the material. While the maxima amplitudes of the
dispersions || are attained at x; = 0.7 and x; = 0.6 for an increasing magnetic field H,
application especially on Fig. 2(a) and Fig. 2(b), respectively. Also, we observe that the
dispersion relations |V| decrease for an extended x; coordinate such that the behavior of
the dispersions || due to (a) homogeneous impedance and (b) inhomogeneous
impedance on an inhomogeneous solid half-space are alike in every aspect except in their
respective dispersion amplitudes and a difference in behavior when x; > 1.4. Physically,
this has shown that the presence of external magnetic field influences the wave
propagation especially as a push to the material characterizations and thus, impacts the
wave attenuation and velocity of propagation. Hence, low magnetic fields on the model
tend to give reduced influences of propagation as observed.

(a) 12x107F (b) 3h5x 10"? F
1.x107%f Hy = 0 3.x10°F Hy = 0
----- 1000; 5E - ———- 1000;
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Fig 2. Variation of magnetic field H,(4/m) on the dispersions |V| of Rayleigh wave against x,, considering
(@) homogeneous impedance; (b) inhomogeneous impedance on an Inhomogeneous solid half-space
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Fig. 3. Variation of inhomogeneous parameter m on the dispersions |V| of Rayleigh wave against x,, considering
(@) homogeneous impedance and (b) inhomogeneous impedance on an Inhomogeneous solid half-space

Consequently, Fig. 3 demonstrates the effect of the inhomogeneous parameter mon
the dispersions |V| of Rayleigh wave againstx; coordinate, considering (@) homogeneous
impedance and (b) inhomogeneous impedance on an inhomogeneous solid half-space
through a constant applications of the physical quantities of magnetic field H,,
impedance Z;, i = 1,2, rotation 2 of the medium, corrugated parameters (g, ¢ and b) i.e.
parameters associated with the variable amplitudes of corrugation and wavenumber,
respectively, on the material.
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This is such that an increase in the inhomogeneity m result to a sequential decrease
in behavior of the dispersion relation |V| of the wave due to homogeneous impedance
that is Fig. 3(a) while the dispersion |V| due to inhomogeneous impedance; Fig. 3(b)
possess negligible behavior. That is, the minima value of dispersion due to the
homogeneous impedance is attained when the inhomogeneity m increase. However, both
considerations; Fig. 3(a) and Fig. 3(b) attain their maxima values of dispersions |V|close
to x; = 0.6 and x; = 0.5, respectively. For extended length of the material both
dispersions decreases whilst noticing a difference in behavior for x; > 1.4 and the short
dispersion amplitudes of the Rayleigh wave due to homogeneous impedance as
compared with the dispersion amplitudes of the Rayleigh wave due to inhomogeneous
impedance. This could be physically attributed to the characterizations of the solid half-
space owing to fiber-reinforcement, homogeneous impedance and inhomogeneous
impedance considerations on the inhomogeneous fiber-reinforced. Thus, it suffices to
infer that the impact of the wave velocity and attenuation on the homogeneous
characterization of the material would be pronounced as compared with the
inhomogeneous material for the considered same physical parameters of the model.

More so, Fig. 4 depicts the effect of rotation 2 of the medium on the dispersions|V|
of Rayleigh wave against x; coordinate, considering (a) homogeneous impedance and (b)
inhomogeneous impedance on an inhomogeneous solid half-space especially when the
quantities of magnetic field H,, impedance Z;, i = 1,2, inhomogeneous parameter m,
corrugated parameters (a, c) i.e. parameters associated with the variable amplitudes of
corrugation and wavenumber b are unchanged on the solid half-space.
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Fig. 4. Variation of rotation 2, rad/s on the dispersions |V| of Rayleigh wave against x;, considering
(@) homogeneous impedance and (b) inhomogeneous impedance on an Inhomogeneous solid half-space

We observe that both conditions possess mixed behaviors in some domains of the
Rayleigh wave dispersion profile when the rotation increase. That is, the two dispersions
tend to move in upward trend for an increase in rotation within the domain 0 < x; <1
whilst possessing mixed behavior (increase and decrease) and after which the increase
ensues again in a minimal manner, sequentially. However, for an increase in rotation, an
outright decrease in behavior equally occur within the domain 0.95 < x; < 1.25
in Fig. 3(b). Near x; = 0.55 and x; = 0.45 gives the positions of the maxima values of the
dispersions of the Rayleigh wave on the material for Fig. 3(a) and Fig. 3(b), respectively.
Hence, we can infer that the maxima values occur when the rotation is large on the
material. And again, the amplitude of the dispersion due to inhomogeneous impedance
is large as compared with the amplitude of the dispersion due to homogeneous
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impedance, i.e., both has very close behavior aside their amplitudes and the behavior
around the extended length of the material say from x; > 1.4. Realistically and across
the length of the material, it is evident that the wave modulation is being impacted by
rotation of the medium in a higher proportion.

Nevertheless, Fig.5 connotes the impact of a associated with the variable
amplitude of corrugation on the dispersions | 7| of Rayleigh wave as against x; coordinate,
considering (a) homogeneous impedance and (b) inhomogeneous impedance on the
inhomogeneous medium. This is feasible only on the constant application of the physical
parameters of rotation 2, magnetic field H,, impedance Z;, i = 1,2, inhomogeneous
parameter m, corrugated parameter ¢ (parameter associated with the variable amplitudes
of corrugation) and wavenumber bon the inhomogeneous solid half-space. Following
this, Fig. 5(@) and Fig. 5(b) decrease sequentially in the domains 0.5 <x; <2 and
0.6 < x; < 1.1, respectively when the parameter a associated with the variable amplitude
of corrugation increase. We equally note mix behavior in both cases in the domain
0 < x; <£0.1. Fig. 5(b) increases again for an increase in a from x; > 1.3 before mix
behavior ensued. More so, the maxima profiles of the dispersions in Fig. 5(a) and Fig. 5(b)
of the Rayleigh wave were attain close to x; = 0.35 and x; = 0.3, respectively, especially
when a associated with the variable amplitude of corrugation increase. Generally, the
dispersions of the wave tend to decrease along the length of the material as the wave
propagate. We note that both cases have differences in dispersion amplitudes on the
considered length of the solid medium and as well as in behaviors for extended length
of the material.
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Fig. 5. Variation of a associated with the variable amplitude of corrugation on the dispersions |V|
of Rayleigh wave against x;, considering (a) homogeneous impedance and (b) inhomogeneous impedance
on an Inhomogeneous solid half-space

In a similar analysis, Fig. 6 demonstrates the effect of ¢ associated with the variable
amplitude of corrugation on the dispersions | 7| of Rayleigh wave as against x; coordinate,
considering (a) homogeneous impedance and (b) inhomogeneous impedance on the
inhomogeneous medium. This is such that the physical parameters of rotation (2,
magnetic field H,, impedance Z;, i = 1,2, inhomogeneous parameter m, corrugated
parameter a (parameter associated with the variable amplitudes of corrugation) and
wavenumber b remain steady on the material. Hence, we note that parameter ¢ associated
with the variable amplitude of corrugation gradually increase the dispersions of the
Rayleigh wave when increased in both cases especially within the domain 0 < x; < 0.8
for Fig. 6(a) and 0 < x; < 1.4 for Fig. 6(b), and after which a very gradual decrease and
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a uniform behavior, respectively, occurs. In addition, for the dispersion due to
homogeneous impedance, the parameter cdecrease the dispersion relations of the
Rayleigh wave in the domain 0.8 < x; < 2 when increased whilst observing uniform
behavior for the inhomogeneous impedance case when x; > 1.4. More so, for an increase
in ¢ associated with the variable amplitude of corrugation, the maxima profiles of the
dispersions of the Rayleigh wave were recorded close to x; = 0.49. Thus, we can deduce
that the dispersions of the wave tend to decrease along the length of the material as the
wave propagate whilst noting that both cases have differences in dispersion profiles in
terms of their amplitudes and behaviors at the extended length of the coordinate.
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Fig. 6. Variation of ¢ associated with the variable amplitude of corrugation on the dispersions |V| of
Rayleigh wave against x;, considering (a) homogeneous impedance and (b) inhomogeneous impedance
on an Inhomogeneous solid half-space

Be that as it may, Fig. 7 depicts the impact of the wavenumber b (associated with
the corrugation) on the dispersions |V| of Rayleigh wave as against x; coordinate,
considering (a) homogeneous impedance and (b) inhomogeneous impedance on the
inhomogeneous medium when the parameters of rotation 2, magnetic field H,,
impedance Z;, i = 1,2, inhomogeneous parameter m, corrugated parameters (a,c)
(parameters associated with the variable amplitudes of corrugation) are in fixed state on
the medium.

We deduce that the dispersion profiles of the Rayleigh wave in both cases show
some outright mixed behaviors (uniform, decrease and increase) in certain domains of the
horizontal coordinate x; when the wavenumber b increase. However, an outright
downward trend ensues in the domain 0.5 < x; < 1.8 in Fig. 7(b) when the wavenumber
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Fig. 7. Variation of wavenumber b associated with the corrugation on the dispersions |V| of Rayleigh
wave against x;, considering (a) homogeneous impedance and (b) inhomogeneous impedance on an
Inhomogeneous solid half-space
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b increase. The maxima values in Fig. 7(a) and Fig. 7 (b) occur near x; = 0.6 and x; = 0.5,
respectively while the minima values of the dispersions occur when b is large. When
b = 0.5 and along the extended length of the material, there exist gradual upward trend
different from the initial behavior of the dispersions. We equally observe as in Fig. 6, that
Fig. 7 possess reduce amplitude of dispersion for the dispersion due to homogeneous
impedance as compared with the amplitude of dispersion occasioned by the
inhomogeneous impedance. This can be attributed to the homogeneous impedance and
inhomogeneous impedance considerations on the inhomogeneous fiber-reinforced solid.
Thus, owing to the considered geometry, it is inferred that the number of cycles or
wavelengths per unit of distance (wave number) has huge influence on the wave
propagation on the material such that mixed occurrences of the Rayleigh wave were
recorded across certain positions on the material.

In a different vein, Fig. 8 depicts the effect of impedance Z, on the dispersions|V|of
Rayleigh wave as againstx; coordinate, considering (a) homogeneous impedance and (b)
inhomogeneous impedance on the inhomogeneous medium when the parameters of
wavenumber b, rotation (2, magnetic field H,, impedance Z;, i = 1, inhomogeneous
parameterm, corrugated parameters (a,c) (parameters associated with the variable
amplitudes of corrugation) are unchanged on the solid medium. Figure 8 shows that
increase in the impedance Z, yield negligible behavior in terms of increase and decrease
on both considered dispersions of Fig. 8(a) and Fig. 8(b), respectively. However, they
dispersions in both cases are uniformly distributed in this instance of increase in Z,. They
attain maxima values close to x; = 0.6 and x; = 0.5, respectively at any of the given Z,.
This can be attributed to the material exhibition where the resistant-like phenomena of
the impedance is felt or witnessed. However, Fig. 8(a) has a reduced dispersion amplitude
as compared with Fig. 8(b). This can be attributed to the homogeneous impedance and
inhomogeneous impedance considerations on the inhomogeneous fiber-reinforced
medium.
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Fig. 8. Variation of impedance Z, on the dispersions || of Rayleigh wave against x,, considering
(@) homogeneous impedance and (b) inhomogeneous impedance on an Inhomogeneous solid half-space

In a similar vein, Fig.9 demonstrates the effect of impedance Z; on the
dispersions|V7| of Rayleigh wave as against x; coordinate, considering (a) homogeneous
impedance and (b) inhomogeneous impedance on the inhomogeneous medium when the
parameters of wavenumber b, rotation (2, magnetic field H,, impedance Z;, i = 2,
inhomogeneous parameter m, parameters associated with the variable amplitudes of
corrugation (a, ¢) remain constantly applied on the solid. In the light of this, Fig. 9 shows
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that increase in the impedance Z; yield negligible behavior on both considered
dispersions of (a) and (b), respectively in terms of decrease an increase. They attain
maxima values close to x; = 0.6 and x; = 0.5, respectively at any of the given Z;. This
can be attributed to the material characteristics where a resistant-like phenomena of the
impedance is witnessed. However, Fig. 9(a) has a reduced dispersion amplitude as
compared with Fig. 9(b). This can be attributed to the homogeneous impedance and
inhomogeneous impedance considerations on the inhomogeneous fiber-reinforced
medium. We can say that this analysis on Z; is alike to analysis on Fig. 8 with uniform
distributed dispersions at this instance.
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Fig. 9. Variation of impedance Z; on the dispersions |V| of Rayleigh wave against x;, considering
(@) homogeneous impedance and (b) inhomogeneous impedance on an Inhomogeneous solid half-space

Conclusions

The present investigation aimed at exploring a mathematical model and its analysis,
occasioned by the dispersion relation of Rayleigh wave in a rotating inhomogeneous half-
space with variable corrugation amplitudes and impedance conditions under magnetic
influence. The impedance conditions were made to be in two characterizations i.e.,
homogeneous impedance and inhomogeneous impedance conditions at the boundary of
the material. We employed the constitutive relations for a fiber-reinforced material
alongside an exponentially decaying function of the material parameters characterizing
the inhomogeneity, rotation of the medium and magnetism in deriving the equations of
motion of the wave on the material. Through this, the analytical solution of the model
was derived using the normal mode analysis. Subsequently, using the corrugated-
impedance boundary conditions, the two dispersion relations of Rayleigh wave for
homogeneous impedance and inhomogeneous impedance conditions were formulated.
The graphical depictions of these two dispersion relations of Rayleigh wave where the
variations of the physical parameters of rotation, inhomogeneity, magnetic field,
impedance, wavenumber and variable amplitudes of corrugation parameters were carried
out are illustrated. This is such that:

1. An increase in the magnetic field H, give rise to increase in the behavior for the two
dispersion relations of the Rayleigh wave on the inhomogeneous fiber-reinforced
medium, that is, dispersion due to inhomogeneous impedance and dispersion due to
homogeneous impedance increases for increase in H,.

2. Increase in the inhomogeneity m result to a sequential decrease in behavior of the
dispersion relation of the wave due to homogeneous impedance while the dispersion due
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to inhomogeneous impedance possesses negligible behavior at this instance.

3. A larger portion of the dispersion profiles witnessed increase in behavior when the
rotation £2 increase. However, the rotation (2 of the medium yielded mix behaviors on the
dispersion relation of the Rayleigh wave especially in certain domains of the horizontal
coordinate when increased.

4. The parameter a associated with the variable amplitude of corrugation caused both
decreasing behavior and increasing behavior on both dispersion relations of the wave in
certain domains of the horizontal coordinate especially when increased. While the
parameter ¢ which is also associated with the variable amplitude of corrugation caused
an upward trend on both dispersion relations of the Rayleigh wave when increased. This
occurrence ensued especially to a larger extent in the domain of the horizontal coordinate
where a very slight mix behavior occurs afterwards. In addition, for the dispersion due to
homogeneous impedance, the parameter cdecrease the dispersion relations of the
Rayleigh wave in the domain 0.8 < x; < 2 when increased whilst observing uniform
behavior for the inhomogeneous impedance case when x; > 1.4.

5. The wavenumber associated with the variable corrugated surfaces tend to cause a
decrease in behavior to the dispersions of the waves to a large extent when increased
while noting some mixed behaviors in both cases towards the extended part of the
material.

6. Impedance parameters, that is, both the normal and horizontal impedances behaved
alike such that they pulled a resistant-like measure on the material by exhibiting a
negligible impact when increased on the material in terms of increase and decrease.
However, we can equally adduce that the dispersions in both cases were uniformly
distributed in this instance.

Thus, it is imperative to state that this model and its analysis invoke special cases
found in the literature when the variable amplitude parameter cis neglected, i.e., at
¢ = 0, models related to Asano [4] are gotten for constant or uniform amplitude of
corrugation as occasioned in Fig. 1(a). Hence, we adduce that this study should be
beneficial to the investigation and characterization of new and old materials,
mathematics of wave phenomena cum solution, and the entire research community
working in the directions similar to surface waves on solid materials. Also, the most
immediate and realistic engineering applications where the joint interactions of Rayleigh
wave, magnetic influences, rotation and fiber reinforcement becomes eminent or
applicable is in the design and failure analysis of rotating machinery components
designed from composite materials, like those in aerospace materials especially in rotor
blades, non-destructive testing using surface waves, and making of piezo-magneto-
electric sensors and actuator technologies.
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Nomenclatures

b is wavenumber;

a, c are parameters associated with variable amplitude of corrugation;
o;j is stress tensor,

g;j is strain tensor;

u; is displacement vector;

8;; is Kronecker-Delta function;

A is Lame’s constant;

a, B, (u, — ur) are fiber-reinforced parameters;
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F; is Magnetic force;

o 15 electric permeability;

Uo IS Magnetic permeability;

H; is Magnetic vector field;

£ is Rotation parameter of the medium;
p is density;

x; are coordinates;

Z,, Z, are impedance parameters.

Appendix

di1 = G13Gys;

di; = —m(G15G24 + G13G27);

dy3 = (=b?i*pG, — b?pGys — pw?Gys + p?02Gis + M?pGraGay — WP GisHG €l +
+G13(—pw? + p20% — b?pGy3 — W?HFuE))/p;

dia = (M(b?i?pG15Gr + Goa(pw? — p0? + b2i%pGy, + b?pGis + W?HGUE) +
+Go7(p(b* + w? = pQ*) + w?Hi&o1t))) /P

dis = % (b%p2w? + p?w* — b?p30?% — 2p3w?%0?% + 4p* %027 + p*0* — 2bimp3wNG,e +
+bimp?G,,(2pw — bimGyg) + b2pw?HEué + pw*H3u3 — p?w?N?HEué + pw*HEequd —
—p?w 0% Hi gop§ + w*Hyeous + b*pGyi3(p(b? + w? — p*) + w?Hieouf)).



