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ABSTRACT  
The propagation of the interphase boundary during the growth of the perovskite phase in a pyrochlore 
matrix in thin ferroelectric lead zirconate titanate films on a silicon substrate is studied using the methods 
of configurational force mechanics. A numerical solution of the boundary value problem of the growth of a 
perovskite inclusion in an initially pyrochlore film is obtained in axisymmetric and three-dimensional 
formulations. The growth of cylindrical, conical, and spherical inclusions is considered. The growth of single 
and multiple regularly and irregularly located inclusions were studied. A comparison of the solutions to the 
problem in linear-elastic and elastoplastic formulations was made. The dependence of the configurational 
force on the inclusion size and on the distance from the substrate is obtained. In the modeling, the 
interphase boundary rate was determined by a power-law dependence on the configurational force. Based 
on the results of finite-element computations of the spatial and temporal distribution of the configurational 
force and the evolution equation for the growth rate of the interphase boundary, the gradient of the growth 
axis angle deviation was determined, correlating with the experimental data obtained from X-ray 
diffraction analysis and scanning electron microscopy. 
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Introduction 
Polycrystalline ferroelectric films with a perovskite structure, owing to their high 
electromechanical properties, have been widely used as FeRAM memory elements [1–5], 
offering high data storage density and fast operation, as well as in MEMS devices [5–7], 
microwave electronics [8,9], energy storage devices [1], infrared detectors [1,2], and 
optical modulators [2]. Thin-film coatings enable device miniaturization and high 
performance. Modern methods for fabricating thin ferroelectric films are multi-stage 
technologies based on radio-frequency magnetron deposition of amorphous films at low 
temperatures and subsequent heat treatment. The pyrochlore → perovskite phase 
transformation occurs during the final stage of film fabrication, during high-temperature 
annealing in air at 580 °C. 

One of the primary mechanisms for forming the perovskite phase in thin films  
on silicon substrates is the growth of island structures (Fig. 1(a)) as spherulites [10,11].  
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(a) (b) 

 

Fig. 1. Formation of spherulitic structures in thin films of PZT: (a) at the initial stage of growth (data from an 
optical microscope, 1 – pyrochlore phase, 2 – perovskite phase), (b) at the final stage (maps of 

crystallographic orientations of growth axes based on the registration of backscattered electron diffraction) 
 
As spherulitic islands merge, a blocky spherulitic microstructure of perovskite with 

linear boundaries is formed (Fig. 1(b)) [7]. In the case of the studied lead zirconate titanate 
(PZT) thin films, the phase transition from the pyrochlore phase to the perovskite 
structure results from a crystallization (recrystallization) process. 

During the growth of a spherulite, a progressive deviation of the growth axis from 
the vertical (normal to the free surface of the film) in the meridional plane is observed. 
The main cause of this deviation is mechanical stresses arising in the thin film because 
of a change in volume (-8 %) [12] during the phase transition. The stresses arising during 
the growth process was evaluated in [12–14]. Due to the deviation of the growth axes, a 
structure with local axial symmetry is formed within the spherulite, determining the film 
properties at the macro level. 

The relevance of studying residual stresses induced during the film production 
process and characteristic microstructural parameters of spherulites (size, thickness after 
shrinkage, angles of deviation of the growth axes, the presence and orientation of defects) 
is associated with their significant influence on the functional characteristics of 
ferroelectric films [15–17], dielectric properties [14–17] and hysteresis behavior [15–18]. 

One of the promising approaches to describing the kinetics of interphase boundaries 
is the approach of configurational force mechanics (configurational mechanics, mechanics 
in material space). The origins of configurational force mechanics go back to the work  
of J.D. Eshelby in 1951 [19], where the concept of a force acting on an elastic singularity 
(or defect) was introduced. It is defined as the negative gradient of the total energy  
of a body relative to the position of the defect in the material (not in physical space). The 
following terms were subsequently used for this force: a configurational force, a driving 
force, a thermodynamic force (or affinity), a non-Newtonian force, and a material force. 

The mechanics of configurational forces have been actively developing since the 
1980s as a branch of solid body mechanics, providing a natural description of the 
evolution of heterogeneities of various natures—from the movement of defects and crack 
growth to the development of new phase regions and the propagation of chemical 
reaction fronts. These processes have in common that they cannot be reduced to the 
displacement of material points under the action of mechanical forces but lead to a 
change in the configuration of the body due to the movement of defects and boundaries 
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relative to the material points, i.e., in the material space. Various theoretical and applied 
aspects of configurational mechanics can be found in [20–31]. 

The aim of this study is to investigate the kinetics of the pyrochlore → perovskite 
interphase boundary during high-temperature annealing by analyzing the spatial 
distribution of configurational forces during perovskite inclusion growth. The growth of 
inclusions with various initial configurations, including cylindrical, conical, and spherical, 
is considered. A solution to the problem is obtained in both linear-elastic and elastic-plastic 
formulations. The latter formulation allows for indirect consideration of dislocations, 
micropores, and microcracks. To evaluate the mutual influence of inclusions during growth, 
a solution to the problem for multiple irregular inclusions in a three-dimensional 
formulation is considered. The results are verified by comparing the calculated gradient of 
the growth axis deviation angle with experimental data. 

 

Materials and Methods 
The objects of the study were thin polycrystalline films of Pb(Zr1-xTix)O₃ (PZT) [15]. The 
composition of the binary solid solution (1–x)PbZrO₃–xPbTiO₃ corresponded to the 
morphotropic phase boundary (MPB), where tetragonal and rhombohedral phases coexist 
at a ratio of x(Ti/Zr) ≈ 46/54, leading to optimal piezoelectric properties. 

The PZT thin films were fabricated in a two-step process using radio-frequency 
magnetron sputtering of a ceramic target. The substrate used was a <100> - oriented silicon 
wafer with sequentially deposited layers of silicon dioxide (SiO₂, ~ 300 nm thick) and 
platinum (Pt, 80 nm thick) [12]. The resulting film thickness was 500 nm, deposited at a 
temperature of 160 °C. As-deposited films were initially amorphous. Subsequent annealing 
(1 h) in an air atmosphere at temperatures above 450 °C resulted in the formation of a 
pyrochlore structure. The phase transformation from pyrochlore to perovskite began at 
530 °C, initiating the formation of islands (perovskite inclusions). To obtain continuous 
perovskite films, the annealing temperature was increased to 580 °C [10]. 

The average size of the resulting spherulitic blocks ranged from 10 to 40 μm. This grain 
size was controlled by varying the target-to-substrate distance from 30 to 70 mm during 
deposition, which correspondingly varied the substrate temperature from 90 to 160 °C.  
The growth axis deviation angle was characterized using scanning electron microscopy (Lira 
3 Tescan, EVO-40 Zeiss) in both backscattered electron and electron backscatter diffraction 
modes, as well as by θ-2θ X-ray diffraction (XRD) (Rigaku Ultima IV) [13]. The stress-strain 
state computations were performed using the finite element program ANSYS 2022 R2. 
 
Model of perovskite phase growth in a thin film 
The boundary-value problem describing the growth of a perovskite inclusion within an 
initially pyrochlore film on a silicon substrate was solved in axisymmetric and three-
dimensional formulations, as shown in Fig. 2. The axisymmetric formulation is less 
computationally demanding and enables multivariate calculations with varying inclusion 
geometries, whereas the three-dimensional formulation provides a more accurate 
representation of the interactions between neighboring inclusions. In the computations, 
the inclusion shape (cylindrical, conical, or spherical) and its characteristic dimensions 
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(a) (b) 

 

Fig. 2. Geometry parameters and boundary conditions for representative volume element of PZT film in  
(a) axisymmetric model, (b) 3D model. The material system consists of the perovskite inclusion 1,  

the pyrochlore matrix 2 and the silicon substrate 3 
 
were varied, (R is the inclusion radius, 2𝜌 is the distance between inclusion centers, 𝛾 is 
the cone angle). 

During the phase transition from pyrochlore to perovskite, there is an 8 % reduction 
in volume [12], which is the main source of stress in the film. The stresses are determined 
by the transformation strain tensor: 
𝜺𝑡𝑟 = 𝜀∗𝟏 =

1

3

𝛥𝑉

𝑉
𝟏,              (1) 

where 𝟏 is the unit tensor, 𝛥𝑉 is the volume reduction under the phase transition, 
𝜀∗= 8/3 %. Note that the transformation strain tensor has nonzero value only in the 
inclusions. It is zero in the pyrochlore matrix and substrate. The constitutive equation of 
thermo-elasto-chemo-plasticity within the framework of infinitesimal mechanics is 
defined by the expression: 
𝝈 = 𝑪 

4 : (𝜺 − 𝜺𝑡𝑟 − 𝜺𝑝 − 𝜺𝑇),             (2) 
where 𝝈 is the stress tensor, 𝑪 

4  is the fourth-order elastic moduli tensor, 𝜺 = (𝛻𝒖)𝑆is the 
total strain tensor, 𝜺𝑝 is the plastic strain tensor defined at the active loading by relation: 
𝜺̇𝑝 =

1

𝐻′

𝜕𝐹

𝜕𝝈
⊗  

𝜕𝐹

𝜕𝝈
: 𝝈̇,              (3) 

with 𝐹 = √3/2dev(𝛔):dev(𝛔) − 𝐻(𝜀𝑝) is von Mises yield function, dev(𝛔) = 𝛔 −
1

3
tr(𝛔)𝟏 

is the stress deviator, 𝐻′ = 𝑑𝐻/𝑑𝜀𝑝 is the slope of the stress-strain curve (isotropic 
hardening is assumed), 𝜺𝑇 is the temperature strain tensor: 
𝜺𝑇 = 𝛼𝛥𝑇𝟏,               (4) 
here 𝛼 is linear thermal expansion coefficient. 

The appearance of mechanical stress slows down the advance of the interphase 
boundary. In the configurational force method, the rate of advance of the interphase 
boundary along the normal can be written as [14]: 
𝑉𝑁 = 𝐴|𝑓𝑁|𝑛−1𝑓𝑁,                (5) 
where 𝑉𝑁 is the interface propagation velocity in interface normal direction, 𝑓𝑁 is the 
configurational force: 
𝑓𝑁 = 𝑵 ⋅ [[−𝒃]] ⋅ 𝑵,               (6) 
where N is the normal vector to the interface boundary, 𝒃 is Eshelby energy-momentum 
tensor: 
𝒃 = 𝜓𝟏 − 𝝈 ⋅ 𝜺,                (7) 
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where 𝜓 is the volume density of free energy defined by expression: 
𝜓 =

1

2
(𝜺 − 𝜺 

𝑡𝑟 − 𝜺𝑝 − 𝜺𝑇): 𝑪 
4 : (𝜺 − 𝜺 

𝑡𝑟 − 𝜺𝑝 − 𝜺𝑇) + 𝜓0(𝑇),          (8) 
here 𝜓0(𝑇) is the chemical free energy density, which depends on temperature. It is 
assumed that the jumps ⟦𝜀∗⟧ ≠ 0 and ⟦𝜓0⟧ ≠ 0 in the phase transformation. 

The non-uniform configurational force distribution along the film thickness leads to 
different interface propagation velocities depending on the vertical coordinate z.  
This leads to the tilting of the initially vertical boundary (for linear dependencies 𝑉𝑁(𝑧)) 
and the curvature of the initially straight boundary (for nonlinear dependencies 𝑉𝑁(𝑧)). 
The orientation of the interphase boundary determines the orientation of the growth axis 
of the formed perovskite. 

The main feature of the spherulite ferroelectric structure is the near to linear 
dependence of the rotation angle 𝛽 of the growth axis on the coordinate along the radius 
of the spherulite. Assuming that the rotation is caused by the action of configurational 
forces, we can obtain an expression for the gradient of the growth axis angle [14]: 
𝜕𝛽

𝜕𝑟
= 𝑐𝑜𝑠 2 (𝛽)

𝑛

𝑓

𝜕𝑓

𝜕𝑧
.                (9) 

The dependences 𝛽(𝑟, 𝑧 = ℎ) for various spherulites were measured 
experimentally [10] based on X-ray diffraction analysis and scanning electron microscopy 
methods. With linear changing 𝛽 from r the value of 𝜕𝛽

𝜕𝑟
 is constant and can be used for 

validation of the model. 
 
Results and Discussion 
The purpose of the computations was to determine the stress distribution, and the 
associated configurational forces near the interphase boundary. Three types of inclusions 
were considered: cylindrical, conical, and spherical. The multi-variant finite element 
computations were performed for regular and non-regular inclusion systems with 
different sizes of perovskite inclusions. The material parameters [12] used in the solution 
process are given in Table 1. 
 

Table 1. The material parameters used in the computations 
 E, MPa v , 1/ºС σ02, MPa 

Perovskite 70 000 0.3 9.0⸱10-6 500 
Pyrochlore 70 000 0.3 9.3⸱10-6 - 

Silicon substrate 109 000 0.3 4.2⸱10-6 - 
 

The rate of radial change in the deviation angle of the growth axis is determined 
for the jump value ⟦𝜓0⟧ equal to 650 MJ/m3. The data on the change in enthalpy from [32] 
for La2Ti2O7 served as a guideline for setting this value. 

 
Axisymmetric model 

Cylindrical inclusion. The cylindrical representative volume element with the radius equal 
to half the distance between the centers of inclusions (𝜌 = 10h = 5 μm) is used for an 
axisymmetric formulation of the problem. To describe the evolution of the perovskite 
inclusion growth process, its radius R varied in the range from h to 10h with a step of h. 
The film thickness h was 0.5 μm, and the substrate thickness H in the model was 5 μm. 
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The significant excess of the actual substrate thickness relative to the model was taken 
into account by the fixed boundary condition on the bottom surface. 

The boundary value problem was solved using the ANSYS APDL software package. The 
finite element mesh (Fig. 3) included maximum 200 elements through the film thickness and 
a total of 160 000 elements. A quadratic quadrilateral element formulation was used. 
 

 
 

 

Fig. 3. Axisymmetric finite-element model of a cylindrical inclusion growth on a substrate 
 

Configurational force was calculated using a component-wise stress formulation 
expressed in cylindrical coordinates: 
𝑓𝑁 = 𝜎𝑟𝑟𝜀∗ −

1

2𝐸
⟦𝜎𝜑𝜑

2 + 𝜎𝑧𝑧
2 − 2𝜈𝜎𝜑𝜑𝜎𝑧𝑧⟧ + 𝑓0,         (10) 

where 𝑓0 = ⟦𝜓0⟧. To easily compare different formulations, only the stress-dependent 
part of configurational force is considered below, without 𝑓0. 

 

 
 

Fig. 4. Dependences of stress tensor components rr, zz,  rz [MPa] on the distance from 
the substrate (vertical coordinate z) for the inclusion radius R equal 5h in the model of 
cylindrical growth of perovskite phase. Distance between inclusion centers 2ρ = 20h 

 
This boundary value problem was solved in elastic and elastoplastic formulations. 

Elastic solution. The dependences of stress tensor components rr, zz,  and rz on the 
distance from the substrate (vertical coordinate z) for the inclusion radius R equal 5h are 
presented in Fig. 4. The distributions of stress components have a close to linear character 
over a significant part of the film thickness. Local deviations are observed only on the 
free surface and near the substrate. 
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The stress components rr and rz are continuous at the vertical interphase 
boundary. The stress components zz and  undergo a discontinuity (a jump) at the 
interphase boundary. Figure 4 shows the stress values both to the left of the boundary (in 
perovskite) and to the right of the boundary (in pyrochlore). Because of the high stress 
values at the interphase boundary, the circumferential  and radial stress rr 

components are the most critical. They are likely to be the main cause of the radial and 
ring cracks observed in the spherulitic structure.  

The evolution of radial stress rr and the configurational force fN distributions with 
increasing inclusion radius R is shown in Fig. 5. With an increase in the radius of the 
inclusion R, the radial stress rr change from a decreasing dependence on the distance 
from the substrate z for R/h = 1 to a monotonically increasing dependence for R/h ≥ 2 
(see Fig. 5(a)). Conversely, the configurational force increases steadily from 0 to R/h ≥ 8, 
then starts decreasing at R/h = 9 as z grows (see Fig. 5(b)). 

 

 
(a) 

 
(b) 

 

Fig. 5. Dependences of (а) the radial stress component σ𝑟𝑟 [MPa] and (b) the configurational force fN on  
the distance from the substrate (vertical coordinate z) for various ratios of the nucleation radius to the film 
thickness R/h, in a model of cylindrical growth of perovskite phase. Distance between inclusions 2𝜌 = 20h 

 
For cylindrical inclusions, the monotonically increasing configurational force fN (z) 

(Fig. 5(b)) leads in according with Eq. (5) to a progressive deviation of both the interphase 
boundary and the growth axis from the vertical with the increasing inclusion radius R. 
The initially cylindrical inclusion will gradually transform with increasing R, into a 
truncated conical inclusion with a larger radius on the free surface and a smaller radius 
on the substrate. It should also be noted that there is a surface layer in which the behavior 
of the angle differs slightly from that of the main part of the film. Growth angle deviation 
rate according to Eq. (9), with n = 0.32 and z = h/2 equals 1.1 deg/μm, which corresponds 
to the order of magnitude observed in experiments ~0.5÷1.4 deg/μm [10–14]. 

Elastoplastic solution. The elastoplastic formulation allows us to take into account 
qualitatively the elastic stress relaxation and the appearance of dislocations, micropores, 
and microcracks observed in experiments. To account for plastic deformation in 
perovskites, a basic isotropic hardening model based on the plastic flow theory is applied. 
The hardening modulus was taken to be one hundredth of the Young’s modulus.  
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The resulting stresses and configurational forces for the case of an inclusion radius 
equal to 5h in the elastic–plastic formulation are presented in Fig. 6(a) and Fig. 6(b), 
respectively. The dependency of the configurational force 𝑓𝑁(𝑧) is significantly modified 
by plastic deformation in perovskite. Due to plastic deformations, the stress in perovskite 
decreases, which leads to a significant increase in configurational forces. 
 

 
(а) 

 
(b) 

 

Fig. 6. Dependence of (а) the radial stress component σ𝑟𝑟 [MPa] and (b) the configurational force fN  
on the distance from the substrate (vertical coordinate z) for various ratios of the nucleation radius  
to the film thickness R/h in the model of cylindrical growth of perovskite phase. Distance between 

inclusion centers 2ρ = 20h 
 
Unlike the elastic solution, the monotonicity of the configurational force across the 

film thickness does not depend on the radial coordinate. This feature ensures a monotonic 
increase in the angle of rotation of the growth anisotropy (Fig. 7). Growth angle rotation 
rate according to Eq. (9), with n = 0.07 and z = h/2 equals 0.8 deg/μm, which corresponds 
to the order of magnitude observed in experiments ~0.5 ÷ 1.4 deg/μm.  

 
 

Fig. 7. Rotation angles along spherulite radius 
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Within the elastoplastic formulation, a distinct linear segment in the evolution of 
the anisotropy rotation angle is observed. In contrast, the purely elastic formulation 
reproduces only the order of magnitude of the effect, while failing to capture its 
qualitative behavior observed experimentally [14].  

Conic inclusion. To simulate the growth process, a series of calculations was 
performed in which the cone solution angle varied from –30° to 30° in steps of 10°, and 
the radius of the lower base of the cone ranged from 1 to 9 units in steps of 2. A similar 
set of boundary conditions was analyzed for a cylindrical inclusion. 

 

 
 

Fig. 8. Axisymmetric finite-element model of a conic inclusion growth on a substrate 
 
The expression below is used to calculate the configurational forces for a conical 

inclusion, similar to Eq. (10): 
𝑓𝑁 = 𝜎𝑁𝑁𝜀∗ −

1

2𝐸
⟦𝜎𝜑𝜑

2 + 𝜎𝐿𝐿
2 − 2𝜈𝜎𝜑𝜑𝜎𝐿𝐿⟧ + 𝑓0, (11) 

where 𝑓0 = ⟦𝜓0⟧, 𝜎𝑁𝑁  is the normal stress to the conical interphase surface, 𝜎𝐿𝐿 is the 
stress component along the cone generatrix. 

The dependence of the configurational force on the radial coordinate in the case of 
a conical model does not differ qualitatively from the cylindrical inclusion model (see 
Fig. 9(b)). However, the size of the boundary region in which the behavior deviates 
significantly from linearity increases compared with the case of a cylindrical inclusion. 

 

 
(a) 

 
(b) 

 

Fig. 9. Comparison of the configurational forces fN at different (a) cone angles R/h = 5 and (b) ratios 
of inclusion radius to the film thickness R/h (cone angle 20°) in the model of conic growth of 

perovskite phase. Distance between inclusion centers 2𝜌 = 20h 
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When the cone solution angle varies, the monotonicity of the configurational force 
distribution also changes. For positive angles, the interphase boundary velocity 
calculated using Eq. (5) is higher near the lower base of the cone. For negative angles, 
the maximum values are observed near the upper base. The dependence of the 
configurational force on the angle of the cone shows that the configurational forces tend 
to bring the inclusion to a near to cylindrical state (Fig. 9(a)). 

Spherical inclusion. Two locations of the spherical inclusion were considered: on 
the free surface of the film and on the substrate (Fig. 10). The radii of spherical inclusions 
were considered equal to h/3. Boundary conditions similar to those in the cylindrical 
inclusion problem were used. 

 

  
(а) (b) 

 

Fig. 10. Axisymmetric finite-element model of the growth of a spherical inclusion with a center 
on (a) the film free surface, (b) the substrate 

 
From the dependence of the configuration force (Fig. 11), it can be seen that in a 

spherical inclusion on a substrate, growth in the direction of the film thickness prevails, 
while on the film surface, the inclusion grows in the radial direction. At large radius, the 
curvature of interphase boundary decreased, and the model of a spherical inclusion 
reduces to a conical inclusion. 

 
 

Fig. 11. Configurational forces for a spherical inclusion. The distance is measured from the lowest point 
of inclusion. Inclusion radius is equal to h/3 
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Three-dimensional model 

Single cylindrical inclusion. A three-dimensional model was used to assess the interaction 
of nearby cylindrical perovskite inclusions on stress fields and configurational forces. The 
three-dimensional model has the same geometry and boundary conditions with the prior 
axisymmetric case (see Section “Axisymmetric model”). The first model corresponds to a 
single symmetrical perovskite inclusion (see Fig. 12) with a cylinder radius R varied from 
0.5 to 4.5 μm, a film thickness h of 0.5 μm, and a substrate thickness of 5 μm. The radius 
of the cylinder was then increased incrementally in order to simulate the development of 
the perovskite phase. This case corresponds to the regular (periodic) inclusion system. 
 

  
(a) (b) 

  
(c) (d) 

 

Fig. 12. 3D models of the cylindrical perovskite inclusion growth on a substrate: 
(a) R/h = 1, (b) R/h = 5, (c) R/h = 7, (d) R/h = 9. Distance between inclusion centers 2ρ = 20h 

 
The second model corresponds to the non-regular inclusion system with a more 

realistic scenario for the growth of perovskite inclusions in a pyrochlore matrix (Fig. 1(a)). 
The study focused on six adjacent perovskite inclusions. A key feature of the experiment 
was that the centers of these inclusions were positioned at varying distances from one 
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another. The considered model with an irregular (non-periodic) arrangement of inclusions 
allows for a more detailed study of the effects of interaction between inclusions, paying 
particular attention to such parameters as stress and configuration force. 

Under identical boundary conditions, the differences in the radial, circumferential, 
and vertical stress values for the three-dimensional and two-dimensional axisymmetric 
models were 2, 9.7, and 2.7 %, respectively (compare Figs. 4 and 13) in elastic solutions, 
for an inclusion radius R/h = 5. Similar to the two-dimensional model, the maximum 
stress jump between the perovskite and pyrochlore phases was found to be the jump in 
vertical and circumferential stress. 

 

 
 

Fig. 13. Dependences of the stress tensor components 𝜎𝑟𝑟, 𝜎𝑧𝑧, 𝜎𝜑𝜑, 𝜎𝑟𝑧 [MPa]on the distance from the 
substrate (vertical coordinate z) for the inclusion size R/h = 5h in the 3D model of cylindrical growth of 

the perovskite phase. The distance between inclusion centers is 2ρ = 20h 
 

A comparison of the configurational forces in the three-dimensional and two-
dimensional axisymmetric models revealed differences in the results only for inclusion 
radii R exceeding 0.90 of the half-distance between inclusions ρ. At smaller radii, the 
inclusions do not interact with each other. The results indicate that the maximum 
discrepancy in configuration forces between the two models in this case is 8 % (Fig. 14). 
This result demonstrates the potential of using a highly accurate two-dimensional 
symmetric model to reduce the computational costs associated with calculating 
configuration forces. 

In order to comparison between three-dimensional models and a two-dimensional 
symmetric model with respect to configuration force, it was necessary to choose an 
inclusion radius that was nine times greater than the film height. This approach enabled 
the selection of the influence of inclusions on each other. In the case of small radii, 
inclusions do not affect each other. The findings indicate that the maximum disparity in 
configuration forces between the two models is 8 % in the studied case  (Fig. 14). This 
result indicates the possibility of using a two-dimensional axisymmetric model to reduce 
the computational costs associated with calculating configuration forces. 
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Fig. 14. Comparison of the two-dimensional symmetric with the 3D solution for the configuration 
force fN for R/h=5 and R/h=9. The distance between inclusion centers is 2ρ = 20h 

 
Multiple cylindrical inclusions. A three-dimensional simulation is considered using 

a representative configuration of six inclusions, the spatial arrangement of which was 
obtained from available literature (see Fig. 1). Within the three-dimensional model, the 
influence of inclusion distribution on both the stress-strain state and the configurational 
force was investigated. Changes in the distances between inclusions at successive growth 
stages were examined according to the attainment of radii of 2.5, 5, 7.5, and 10 μm. 

 

  
(a) (b) 

  
(c) (d) 

 

Fig. 15. Growth models of the perovskite phase in a film with a distribution of stress intensity 
fields according to Mises: (a) for cylindrical inclusions with a radius of 2.5 μm, (b) 5 μm,  

(c) 7.5 μm, and (d) 10 μm 
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The evolution of the von Mises stress intensity fields during the growth of six 
cylindrical inclusions is shown in Fig. 15. As the radius of the perovskite inclusion increases, 
the von Mises stress intensity increases simultaneously. This process continues until the 
intersection of two inclusions, where stress concentrators are formed (Fig. 15(c,d). 

To determine the extent to which the distance between perovskite phase inclusions 
influences the configurational force, two stages of perovskite growth development were 
considered. At these stages, the radiuses of the cylindrical inclusion were R1 = 2.5 μm and 
R2 = 10 μm. Two paths were defined for the study the degree of influence when the 
distance between the inclusion centers was L1 = 25.7 μm and L2 = 34.4 μm. Consider 
points A1, A2, B1 and B2, which are defined as shown in Fig. 16. Point A1 is located at  
the boundary of the perovskite and pyrochlore phases on the L1 trajectory, when  
the perovskite phase develops for the R1 cylinder radius. Point A2 is located at the 
boundary of the perovskite and pyrochlore phases on the L2 trajectory, when the 
perovskite phase develops within the R1 cylinder radius. Point B1 is located at the 
boundary between the perovskite and pyrochlore phases along trajectory L1, when the 
perovskite phase develops within the radius of cylinder R2. Point B2 is located at the 
boundary between the perovskite and pyrochlore phases along trajectory L2, when the 
perovskite phase develops within the radius of cylinder R2. 

 

 
 

Fig. 16. Geometry parameters for representative volume element of PZT film for multiple cylindrical 
inclusions. 1 - perovskite inclusions, 2 - pyrochlore matrix 

 
The study demonstrated that the configuration force is related to two geometric 

parameters: the first is the distance between the centers of the perovskite inclusions 2ρ, 
and the second is the radius of the perovskite inclusion R. The configuration force 
increase with decreasing perovskite inclusion radius and with decreasing distance 
between the centers of the perovskite inclusions.  

The greatest configurational force was observed at point A1 (Fig. 17(b)), which was 
located at the interphase boundary at the smaller radius and on the first path L1. The next 
largest configurational force, which was 50 % lower, was at point B1. The next largest  
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(a) (b) 

 

Fig. 17. Dependencies of (a) the radial stress 𝜎𝑟𝑟 [MPa] vs the distance from the spherulite center and 
(b) the configurational force fN vs the distance to the substrate (vertical coordinate z) at different ratios 
of the inclusion radius to the film thickness R/h in the 3D model of growth of 6 perovskite inclusions 

 
configuration force, which was 16 % lower, was at point B2. The configurational force, 
amounting to 7 % less, was observed at point A2. It has been observed that configurational 
force in point B2 exhibits a greater magnitude than in point A2. This is explained by the 
influence of the perovskite inclusion, located at the other end of path L1, on the 
configurational force. 

The radial distributions of radial stresses 𝜎𝑟𝑟 along two different orthogonal 
directions L1 and L2 differ very little (Fig. 17(a)). It is evident that as one moves away from 
the center of the spherulite, the radial stresses decrease. 
 
Comparison of growth axis deviation angles for different deformation 
mechanisms and with experimental data 
The rotation of the crystal-lattice growth axis in growing spherulitic islands, as well as in 
the resulting spherulitic block structure observed in experiments on PZT films [10–14], is 
a consequence of the significant mechanical stresses induced by changes in film density 
during crystallization of the perovskite phase. The growth axes exhibit axial symmetry and 
are oriented radially from the center of each spherulitic island toward its periphery. 

The growth axis rotation rate 𝜕𝛽

𝜕𝑟
 measured in experiments using XRD analysis and 

scanning electron microscopy methods, lies in range of ~ 0.5÷1.4 deg/μm [10–14].  
The rotation rate calculated from Eq. (7) with n  = 0.32 and z = h / 2, is equal 0.4 deg/μm 
for axisymmetric elastic formulation (see section “Elastoplastic solution”) and 0.8 deg/μm 
for axisymmetric elastoplastic formulation (see section “Plastic solution”). These results 
are consistent to the order of magnitude observed in the experiments. 

However, in addition to the mechanism of growth-axis rotation caused by the 
nonuniform distribution of configurational forces along the film thickness during the 
pyrochlore → perovskite phase transition, which was discussed in detail above, 
alternative mechanisms of film deformation are also possible. These include deviations 
of the perovskite growth axes due to: 
1. bending of a multilayer plate (taking into account the compliance of the substrate) due 
to nonuniform initiated by the pyrochlore → perovskite phase transition [14]; 
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2. bending of a multilayer plate due to polarization associated with the paraelectric → 
ferroelectric phase transform [33];  
3. bending of a multilayer plate during cooling from 580 to 21 °C due to mismatches in 
coefficients of thermal expansion [34]. 

Growth axis rotation rate (bending plate curvature) for the first deformation 
mechanism was performed with assuming constant transformational deformation within 
the film based on Eqs. (18) from [14]: 

𝜕𝛽
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where for double-layered plate 𝐸̄𝑖 =
𝐸𝑖

1−𝑣𝑖
, in the film i = PZT (0 ≤ 𝑧 ≤ ℎ), in the substate 

i = Si (−𝐻 ≤ 𝑧 ≤ 0), 𝜀∗𝑃𝑦→𝑃𝑒 = −0.0267. 
Equation (12) can also be used for calculating the rotation growth rate (plate  

curvature) for the second deformation mechanism, which arises from polarization associated  
with the paraelectric → ferroelectric phase transformation with 𝜀∗𝑃𝑎→𝐹𝑒 = 0.0073 [35]  
([36–38] provide data ranging from 0.0020 to 0.0191). 

Equation (12) for calculating the rotation growth rate for the third deformation 
mechanism, which arises during cooling from 580 to 21 °C due to mismatches in 
coefficients of thermal expansion, has the form: 
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In the rotation growth axis rate calculations according to Eqs. (10) and (11) the 
following parameter values were used EPZT = 70 GPa, ESi = 109 GPa, 𝛼𝑃𝑍𝑇= 9.0⸱10-6 1/K, 
𝛼𝑆𝑖  = 2.5⸱10-6 1/K, h = 500 nm, H = 5 μm, 𝜀∗𝑃𝑦→𝑃𝑒 = −0.0267, 𝜀∗𝑃𝑎→𝐹𝑒 = 0.0073, 𝛥𝑇 = 559 K. 
Calculations were performed assuming constant transformation deformation and thermal 
deformation in the film. 

Comparison of the growth axis rotation rate caused by various deformation 
mechanisms is shown in Fig. 17. It can be seen that the dominant contribution arises from  
 

 

 

Fig. 18. Comparison of the growth axis rotation rate caused by various deformation mechanisms 
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nonuniform distribution of configurational forces along film thickness. The rotational 
rates resulting from plate bending due to nonuniform stress distribution, associated with 
pyrochlore → perovskite phase transition [14], bending due polarization associated with 
paraelectric → ferroelectric phase transition [33], bending during cooling due to 
mismatches in coefficients of thermal expansion are significantly smaller. Calculations 
were performed assuming the substate thickness equal 10 thickness of the film. As the 
substrate thickness increases and the film thickness decreases, the influence of the three 
deformation mechanisms under consideration will decrease. 

 
Conclusion 
The results of the interphase boundary propagation during the growth of the perovskite 
phase within a pyrochlore matrix in thin PZT films, carried out using configurational-force 
mechanics, are presented. The nonuniform distribution of configurational forces along 
the film thickness leads to a dependence of the interphase-boundary propagation velocity 
on the vertical coordinate. This, in turn, causes a progressive tilt and curvature of the 
interphase boundary away from the center of the spherulite, thereby determining the 
orientation of the growth axis of the emerging perovskite phase. 

The growth of cylindrical, conical, and spherical inclusions was analyzed. For 
cylindrical inclusions, the dependence of the configurational force on distance from 
substate is nearly linear (monotonically increasing with distance from the substrate), 
which leads to a progressive deviation of both the interphase boundary and the growth 
axis from the vertical as the distance from the spherulite center increases. For conical 
inclusions with small cone angles, the configurational-force distribution along the height 
is monotonically increasing, whereas for large cone angles it becomes monotonically 
decreasing. This behavior indicates the existence of a characteristic slope toward which 
the growth axis asymptotically tends as the interphase boundary propagates. In spherical 
inclusions, more intensive growth in the vertical direction is observed near the substrate, 
while on the free surface growth in the radial direction dominates. At large radius, the 
model of a spherical inclusion reduces to a conical inclusion. 

A comparison of the solutions obtained using linear elastic and elastic–plastic 
formulations showed that the latter yields lower values of configurational forces. The 
elastic–plastic formulation indirectly accounts for the presence of dislocations, 
micropores, and microcracks. Solving the problem within an elastic–plastic framework 
also demonstrated the possibility of a linear increase of the growth axis rotation angle, 
consistent with experimental observations. 

A comparison of the numerical solutions obtained in axisymmetric and three-
dimensional settings for an elementary representative volume (regular inclusions) 
demonstrated good agreement, with differences of less than 10 %. 

The results of a comparison between the growth of single inclusions and multiple 
inclusions arranged regularly or irregularly are presented. The same radial distribution 
pattern (axial symmetry) is observed on the free surface of the film for different angles 
within an inclusion (a growing spherulite) surrounded by neighboring inclusions located 
at various distances. 
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The dominant influence on the growth axis rotation angle is exerted by the non-
uniform distribution of the configurational force along the film thickness during the 
pyrochlore → perovskite phase transition. The rotation associated with plate bending 
caused by stress inhomogeneities initiated by the pyrochlore → perovskite phase 
transition, polarization during the paraelectric → ferroelectric phase transition, and due 
to differences in the thermal expansion coefficients of individual layers are much smaller 
(at least six times lower). This indicates that the distribution of configurational forces 
across the film thickness is the primary mechanism determining the orientation of the 
growth axis. The predicted rate of growth-axis deviation as a function of the distance 
from the spherulite center, obtained using this approach, correlates well with 
experimental data from X-ray diffraction analysis and scanning electron microscopy. 
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